- •Квантовая механика
- •§ 1. Экспериментальные основы квантовой механики
- •§ 2. Классическое и квантовое описание системы.
- •§ 3 Принцип неопределенности.
- •§ 4. Полный набор динамических переменных
- •§ 5. Постулаты квантовой механики.
- •§ 6 Роль классической механики в квантовой механике
- •§ 7 Волновая функция и ее свойства.
- •§ 8 Принцип суперпозиции состояний
- •§ 9 Понятие о теории представлений
- •§ 10 Операторы в квантовой механике
- •§ 12 Среднее значение измеряемой величины.
- •§ 13 Вероятность результатов измерения
- •§ 14 Коммутативность операторов и одновременная измеримость физических величин
- •§ 15. Операторы координаты , импульса, момента импульса, энергии.
- •§ 16. Решение задачи Штурма-Лиувилля для оператора .
- •§ 17 Решение задачи Штурма-Лиувилля для оператора .
- •§ 18. Вычисление коммутаторов, содержащих операторы .
- •§ 19 Волновое уравнение
- •§ 20 Производная оператора по времени
- •§ 21 Интегралы движения в кв. Механике.
- •§ 22. Свойства операторов вида
- •§23. Флуктуации физических величин.
- •§ 24. Неравенство Гайзенберга.
- •§ 25 Оператор Гамильтона различных систем.
- •§ 26. Стационарное состояние различных систем
- •§ 27. Решение волнового уравнения в случае свободной материальной точки
- •Для трехмерного случая
- •§ 28. Интегральные операторы в квантовой механике.
- •§ 29. Интегральный оператор канонического преобразования.
- •§ 30. Каноническое преобразование оператора.
- •§ 31. Уравнения Шредингера в матричной форме.
- •§ 32. Линейный гармонический осциллятор
- •Предельные технологические размеры кристаллов и.С. 0.1 – 0.5 мкм. Существует и предел по физической работоспособности. Однако с уменьшением размера кристалла увеличивается быстродействие приборов.
- •§ 30.1. Каноническое преобразование оператора. Ч. 2
- •§ 34. Унитарные инварианты в квантовой механике.
- •§ 35. Вид операторов ив декартовых и сферических координатах.
- •§ 36. Коммутационные соотношения с оператором .
- •§ 37. Собственные функции и собственные значения операторов и.
- •§ 38. Вырождение энергетических уровней частицы, движущейся в центральном поле.
- •§ 39. Гамильтониан частицы без спина, движущейся в магнитном поле.
- •§ 40. Снятие вырождения по квантовому числу m в случае частицы без спина, движущейся в магнитном поле. Используем
- •§ 41. Оператор бесконечно малого поворота без учета спина.
- •§ 42. Собственный механический момент (спин).
- •§ 43. Операторы ии их свойства.
- •§ 44. Спиновая переменная волновой функции
- •§ 45. Матрицы Паули и их свойства.
- •§ 46 Понятие о спинорах
- •§ 47. Уравнение Паули Мы писали волновое уравнение в виде
- •§ 48. Операторы и, и их свойства
- •§ 50. Принцип тождественности.
- •§ 51. Оператор перестановки и его свойства
- •§ 52. Симметричное и антисимметричное состояния.
- •§ 53. Обменное взаимодействие
- •§ 54. Основное состояние атома гелия
- •§ 55. Схема Юнга квантовой механики.
- •1. И ,
- •2. И .
- •§ 56. Стационарная теория возмущений в случае невырожденного дискретного энергетического спектра: нулевое и первое приближения.
- •§ 58 Стационарная теория возмущений в случае невырожденного дискретного энергетического спектра: второе приближения.
- •§ 59. Критерий применимости теории возмущений.
- •§ 60. Стационарная теория возмущений в случае близких энергетических уровней.
- •§ 61. Метод (представление) Шредингера. Оператор эволюции и его свойства.
- •§ 62. Метод (представление) Гейзенберга. Уравнение движения для оператора.
- •§ 63. Уравнение эволюции среднего значения физической величины. Соотношение неопределенности: время – энергия.
- •§ 64. Матричное представление операторов.
- •§ 65. E – представление.
- •§ 66. Уравнение Шредингера в матричной форме.
- •§ 67. Матричная формулировка задачи о линейном гармоническом осцилляторе.
- •§ 68. Расчет матричных элементов операторов .
§ 26. Стационарное состояние различных систем
Задача Штурма-Лиувилля для оператора : (*)
Волновое уравнение: (**)
Как только поставили в соответствие системе оператор , то можем решать волновое уравнение, находим , которая определяет состояние системы. Задача Штурма-Лиувилля дает собственные значения и собственные функции оператора .
Собственные функции задачи Штурма-Лиувилля и функции, являющиеся решением волнового уравнения совпадают при условии выполнения:
, тогда . Это условие совместности решений (*) и (**).
Так как , то гамильтониан системы явно от времени не зависит, т. е. поле стационарно (задача стационарна) – это говорит о совместности решений (*) и (**).
Рассмотрим стационарную задачу , тогдане зависит от времени. Это либо:
Замкнутая система.
Система в стационарном внешнем поле.
Использую (*) и (**), получим
Это дифференциальное уравнение имеет решение
Подставим эту функцию в (*), тогда
.
Тогда получим
Получили стационарное уравнение Шредингера.
§ 27. Решение волнового уравнения в случае свободной материальной точки
Для свободной материальной точки .
, тогда переходим к стационарному уравнению Шредингера.
Это трехмерная задача
Оператор Лапласа
Оператор представим в виде суммы трех независимых операторов, которые коммутируют. В этом случае можно разделить переменные.
Тогда стационарное уравнение Шредингера запишется в виде
,
где
Для имеем
.
Обозначим
.
Тогда
Решение этого уравнения
Так как частица свободная, то импульс этой частицы сохраняется. Значит сохраняется направление движения частицы.
Мы выбираем движение частицы по направлению оси x. Тогда в силу сохранения импульса имеем .
Для трехмерного случая
Полная волновая функция
(***)
Рассмотрим теперь коммутатор
Так как импульс коммутирует с и не зависит явно от времени, тогда. Из этого следует:
-интеграл движения.
Собственная функция оператора импульса является решением волнового уравнения.
Найдем собственные значения оператора импульса.
{используем, что , т. е.} =
=.
Тогда собственное значение оператора :
Это первое дебройлевское соотношение.
Из (***) вводится - второе дебройлевское соотношение.
Используем, что
Уравнение (***) удовлетворяет собственной функции оператора импульса.
§ 28. Интегральные операторы в квантовой механике.
Оператор в - представлении.
В общем случае
Здесь - ядро интегрального оператора в координатном представлении.
Задача Штурма-Лиувилля
Здесь иизменяются непрерывно.
Разложение функции по базису:
,
где
Тогда
и аналогично
Для того чтобы найти ядро интегрального оператора, разложим - функцию по базису собственных функций из задачи Штурма-Лиувилля.
={т. к. оператор от q , а интеграл по f, то ставим оператор под знак интеграла}{из задачи Штурма-Лиувилля}=.
Поменяем порядок интегрирования
Ядро интегрального оператора
Оператору поставили в соответствие ядро. Тогда можно записать действие оператора на любую функцию, решив задачу Штурма-Лиувилля.
Пусть есть эрмитов оператор
.
Тогда
А в силу равенства имеем
Найдем ядро оператора в координатном представлении. Действиев этом представлении сводится к умножению на.
Мы знаем, что по определению -функции:
Тогда Ядро оператора координат в координатном представлении
Ядро оператора в-представлении, тогда имеет вид