
- •Квантовая механика
- •§ 1. Экспериментальные основы квантовой механики
- •§ 2. Классическое и квантовое описание системы.
- •§ 3 Принцип неопределенности.
- •§ 4. Полный набор динамических переменных
- •§ 5. Постулаты квантовой механики.
- •§ 6 Роль классической механики в квантовой механике
- •§ 7 Волновая функция и ее свойства.
- •§ 8 Принцип суперпозиции состояний
- •§ 9 Понятие о теории представлений
- •§ 10 Операторы в квантовой механике
- •§ 12 Среднее значение измеряемой величины.
- •§ 13 Вероятность результатов измерения
- •§ 14 Коммутативность операторов и одновременная измеримость физических величин
- •§ 15. Операторы координаты , импульса, момента импульса, энергии.
- •§ 16. Решение задачи Штурма-Лиувилля для оператора .
- •§ 17 Решение задачи Штурма-Лиувилля для оператора .
- •§ 18. Вычисление коммутаторов, содержащих операторы .
- •§ 19 Волновое уравнение
- •§ 20 Производная оператора по времени
- •§ 21 Интегралы движения в кв. Механике.
- •§ 22. Свойства операторов вида
- •§23. Флуктуации физических величин.
- •§ 24. Неравенство Гайзенберга.
- •§ 25 Оператор Гамильтона различных систем.
- •§ 26. Стационарное состояние различных систем
- •§ 27. Решение волнового уравнения в случае свободной материальной точки
- •Для трехмерного случая
- •§ 28. Интегральные операторы в квантовой механике.
- •§ 29. Интегральный оператор канонического преобразования.
- •§ 30. Каноническое преобразование оператора.
- •§ 31. Уравнения Шредингера в матричной форме.
- •§ 32. Линейный гармонический осциллятор
- •Предельные технологические размеры кристаллов и.С. 0.1 – 0.5 мкм. Существует и предел по физической работоспособности. Однако с уменьшением размера кристалла увеличивается быстродействие приборов.
- •§ 30.1. Каноническое преобразование оператора. Ч. 2
- •§ 34. Унитарные инварианты в квантовой механике.
- •§ 35. Вид операторов ив декартовых и сферических координатах.
- •§ 36. Коммутационные соотношения с оператором .
- •§ 37. Собственные функции и собственные значения операторов и.
- •§ 38. Вырождение энергетических уровней частицы, движущейся в центральном поле.
- •§ 39. Гамильтониан частицы без спина, движущейся в магнитном поле.
- •§ 40. Снятие вырождения по квантовому числу m в случае частицы без спина, движущейся в магнитном поле. Используем
- •§ 41. Оператор бесконечно малого поворота без учета спина.
- •§ 42. Собственный механический момент (спин).
- •§ 43. Операторы ии их свойства.
- •§ 44. Спиновая переменная волновой функции
- •§ 45. Матрицы Паули и их свойства.
- •§ 46 Понятие о спинорах
- •§ 47. Уравнение Паули Мы писали волновое уравнение в виде
- •§ 48. Операторы и, и их свойства
- •§ 50. Принцип тождественности.
- •§ 51. Оператор перестановки и его свойства
- •§ 52. Симметричное и антисимметричное состояния.
- •§ 53. Обменное взаимодействие
- •§ 54. Основное состояние атома гелия
- •§ 55. Схема Юнга квантовой механики.
- •1. И ,
- •2. И .
- •§ 56. Стационарная теория возмущений в случае невырожденного дискретного энергетического спектра: нулевое и первое приближения.
- •§ 58 Стационарная теория возмущений в случае невырожденного дискретного энергетического спектра: второе приближения.
- •§ 59. Критерий применимости теории возмущений.
- •§ 60. Стационарная теория возмущений в случае близких энергетических уровней.
- •§ 61. Метод (представление) Шредингера. Оператор эволюции и его свойства.
- •§ 62. Метод (представление) Гейзенберга. Уравнение движения для оператора.
- •§ 63. Уравнение эволюции среднего значения физической величины. Соотношение неопределенности: время – энергия.
- •§ 64. Матричное представление операторов.
- •§ 65. E – представление.
- •§ 66. Уравнение Шредингера в матричной форме.
- •§ 67. Матричная формулировка задачи о линейном гармоническом осцилляторе.
- •§ 68. Расчет матричных элементов операторов .
Квантовая механика
§ 1. Экспериментальные основы квантовой механики
1900 г. Планк ввел понятие о квантах и ввел квантовую постоянную. Работа Планка объясняла теорию излучения твердых тел.
1905
г. Классификация спектров Ритцем и
Ридбергом. Все спектральные линии могут
быть посчитаны через термины
, где
-
постоянная Ридберга,n
– натуральное число.
1913 г. Н. Бор теоретически объяснил спектр атома водорода (постулаты Бора).
Эксперименты Франка и Герца. Они рассматривали неупругое рассеяние электронов на атомах. Пропускали пучки электронов через пары ртути. При определенных энергиях, электроны при соударении с атомами ртути теряли часть своей энергии.
Рис.1. Упругое соударение.
Рис. 2. Неупругое соударение
Рис. 3. Зависимость тока I от напряжения U (ВАХ)
Как видно из рис. 3, при определенных энергиях происходит спад ВАХ.
Установка:
Рис. 4 Экспериментальная установка
Была показана энергетическая дискретность атома ртути, определены энергетические уровни.
Рис. 5. Энергетические уровни
- порция энергии, которую может отдать
атом ртути.
1922. Опыты Штерна и Герлоха по расщеплению атомного пучка в неоднородном магнитном поле.
Рис. 6. Вид магнитов в эксперименте Штерна и Герлоха.
По
оси z
поле в обкладках магнита неоднородно.
Так как есть градиент поля
,
то если пропускать вдоль осиx
частицы,
имеющие магнитный момент
,
то возникает сила:
Наблюдалось
расщепление атомного пучка. С точки
зрения классической теории все
равновероятны и поэтому должна получиться
одна широкая полоса. Наблюдались две
четкие линии.
Подтвердили, что магнитный момент атома квантуется, т. е. принимает дискретные знвяения.
,
где
для серебра.
1923 – 1924 гг. Теория Де Бройля корпускулярно-волнового дуализма частиц. Соотношения теории:
Здесь слева параметры частицы: энергия и импульс. Справа параметры волны: частота, волновой вектор.
Волна Де Бройля
,
-
длина волны Де Бройля.
1927 г. Дэвиссон-Джермер. Рассеяние электронов на кристаллической решетке. Подтверждение волновых свойст частиц.
§ 2. Классическое и квантовое описание системы.
Опыт № 1. Имеется источник частиц, экран с достаточно узким отверстием. Картину наблюдаем на Э2
Опыт № 2. Заменяем Э1 на Э1/.
Опыт № 3. Объединяем экраны Э1 и Э1/
При классическом описании опыт 3 давал бы сложение интенсивностей от опыта 1 и 2. Однако опыт 3 показал интерференционную картину, а это волновые свойства. Частица с определенной вероятностью проходит как через щель 1 так и через щель 2. Нельзя точно сказать через какую щель пройдет электрон.
Классическая интерпретация (с числом степеней свободы n=1) решается составлением уравнений в форме Гамильтона:
Можно найти траекторию частицы.
В общем случае состояние механической системы определяется 2n динамическими переменными. Т. е. 2n начальных условий.
Но опыт показал, что мы не можем определить траекторию частицы в микромире.
Количество динамических переменных, которые могут быть одновременно измерены в микромире, в квантовой механике – n.
Скорость
Координата
Если
известна точка
,
то чтобы найти положение точки
надо знать
и
одновременно, т. е. координаты и импульс
должны быть измерены одновременно.
Если
мы знаем
и
,
то можем построить траекторию электрона.
Однако построить такую траекторию мы
не можем (опыт № 3). Тогда мы не можем
одновременно измеритьp
и q.