- •Квантовая механика
- •§ 1. Экспериментальные основы квантовой механики
- •§ 2. Классическое и квантовое описание системы.
- •§ 3 Принцип неопределенности.
- •§ 4. Полный набор динамических переменных
- •§ 5. Постулаты квантовой механики.
- •§ 6 Роль классической механики в квантовой механике
- •§ 7 Волновая функция и ее свойства.
- •§ 8 Принцип суперпозиции состояний
- •§ 9 Понятие о теории представлений
- •§ 10 Операторы в квантовой механике
- •§ 12 Среднее значение измеряемой величины.
- •§ 13 Вероятность результатов измерения
- •§ 14 Коммутативность операторов и одновременная измеримость физических величин
- •§ 15. Операторы координаты , импульса, момента импульса, энергии.
- •§ 16. Решение задачи Штурма-Лиувилля для оператора .
- •§ 17 Решение задачи Штурма-Лиувилля для оператора .
- •§ 18. Вычисление коммутаторов, содержащих операторы .
- •§ 19 Волновое уравнение
- •§ 20 Производная оператора по времени
- •§ 21 Интегралы движения в кв. Механике.
- •§ 22. Свойства операторов вида
- •§23. Флуктуации физических величин.
- •§ 24. Неравенство Гайзенберга.
- •§ 25 Оператор Гамильтона различных систем.
- •§ 26. Стационарное состояние различных систем
- •§ 27. Решение волнового уравнения в случае свободной материальной точки
- •Для трехмерного случая
- •§ 28. Интегральные операторы в квантовой механике.
- •§ 29. Интегральный оператор канонического преобразования.
- •§ 30. Каноническое преобразование оператора.
- •§ 31. Уравнения Шредингера в матричной форме.
- •§ 32. Линейный гармонический осциллятор
- •Предельные технологические размеры кристаллов и.С. 0.1 – 0.5 мкм. Существует и предел по физической работоспособности. Однако с уменьшением размера кристалла увеличивается быстродействие приборов.
- •§ 30.1. Каноническое преобразование оператора. Ч. 2
- •§ 34. Унитарные инварианты в квантовой механике.
- •§ 35. Вид операторов ив декартовых и сферических координатах.
- •§ 36. Коммутационные соотношения с оператором .
- •§ 37. Собственные функции и собственные значения операторов и.
- •§ 38. Вырождение энергетических уровней частицы, движущейся в центральном поле.
- •§ 39. Гамильтониан частицы без спина, движущейся в магнитном поле.
- •§ 40. Снятие вырождения по квантовому числу m в случае частицы без спина, движущейся в магнитном поле. Используем
- •§ 41. Оператор бесконечно малого поворота без учета спина.
- •§ 42. Собственный механический момент (спин).
- •§ 43. Операторы ии их свойства.
- •§ 44. Спиновая переменная волновой функции
- •§ 45. Матрицы Паули и их свойства.
- •§ 46 Понятие о спинорах
- •§ 47. Уравнение Паули Мы писали волновое уравнение в виде
- •§ 48. Операторы и, и их свойства
- •§ 50. Принцип тождественности.
- •§ 51. Оператор перестановки и его свойства
- •§ 52. Симметричное и антисимметричное состояния.
- •§ 53. Обменное взаимодействие
- •§ 54. Основное состояние атома гелия
- •§ 55. Схема Юнга квантовой механики.
- •1. И ,
- •2. И .
- •§ 56. Стационарная теория возмущений в случае невырожденного дискретного энергетического спектра: нулевое и первое приближения.
- •§ 58 Стационарная теория возмущений в случае невырожденного дискретного энергетического спектра: второе приближения.
- •§ 59. Критерий применимости теории возмущений.
- •§ 60. Стационарная теория возмущений в случае близких энергетических уровней.
- •§ 61. Метод (представление) Шредингера. Оператор эволюции и его свойства.
- •§ 62. Метод (представление) Гейзенберга. Уравнение движения для оператора.
- •§ 63. Уравнение эволюции среднего значения физической величины. Соотношение неопределенности: время – энергия.
- •§ 64. Матричное представление операторов.
- •§ 65. E – представление.
- •§ 66. Уравнение Шредингера в матричной форме.
- •§ 67. Матричная формулировка задачи о линейном гармоническом осцилляторе.
- •§ 68. Расчет матричных элементов операторов .
§ 3 Принцип неопределенности.
Две формулировки:
В микромире понятие “траектория” отсутствует
Канонически сопряженные величины одновременно неизмеримы
В трехмерном пространстве канонически сопряженные величины будут:
px и x
py и y
pz и z
Здесь n=3. Имеем 3 одновременно измеряемые динамические переменные. Например:
px. py. pz
x, y, z
x, y, pz и тд.
§ 4. Полный набор динамических переменных
Полный набор динамических переменных – это наибольший набор независимых одновременно измеряемых динамических переменных.
Измерение полного набора динамических переменных полностью определяет состояние квантово-механической системы.
Число динамических переменных в квантовой системе - n и по сравнению с классической системой (2n) уменьшается в 2 раза.
Максимальный набор – это значит, что к этому набору не может быть добавлена ни одна другая переменная, которая не являлась бы их функцией. В этом случае они не зависимы. Каждая из этих переменных не является функцией другой переменной из этого же набора. Заметим, что здесь зависимость не линейная (как в лин. алгебре), а функциональная.
§ 5. Постулаты квантовой механики.
Часто выделяют 4 постулата:
Постулат о волновой функции.
Каждой системе (состоянию кв.-мех. системы может быть поставлена в соответствие волновая функция динамических переменных (из полного набора) и времени, полностью описывающей состояние системы.
Динамические переменные одновременно измеряемы. -n – мерный вектор динамических переменных; функция динамических переменных и времени - описывает эволюцию квантово-механических систем.
В классической механике задание 2n динамических переменных полностью определяет состояние системы через функцию Гамильтона.
В квантово-механической системе описывается эволюция системы через - функцию отn динамических переменных.
О связи физических величин и объектов математики.
Каждой физической величине ставится во взаимооднозначное соответствие оператор: .
Связь между результатами измерения физической величины и значением оператора(т. е. решением математических задач)
- значение физической величины , которое получено в результате измерения системы, находящейся вi-том квантовом состоянии.
является одним из собственных значений оператора . Это задача Штурма – Лиувилля (задача на собственные функции и собственные значения). Задача определяет собственные значения, соответствующиеи определяет собственные функции, соответствующие собственным значениям.
Если собственные значения образуют дискретное множество, то говорят о дискретном спектре.
Если собственные значения образуют непрерывное множество, то спектр непрерывный.
Определение среднего значения физической величины
здесь введено понятие скалярного произведения для функций из гильбертова пространства.
Гильбертово пространство – это пространство квадратично интегрируемых функций (нормируемых функций).
- квадратично интегрируемые функции, тогда
Это определение для - декартовых переменных. Для перехода к другой системе координат вводится якобиан.
* - комплексное сопряжение.
Это аналог длины в векторном пространстве.