
- •И. В. Крепышева
- •Содержание
- •Тема 7. Химия металлов 125
- •1.2. Квантово-механическая модель атома водорода
- •1.3. Строение многоэлектронных атомов
- •1.4. Периодическая система элементов д.И. Менделеева
- •1.5. Периодические свойства элементов
- •1.6. Решение типовых задач
- •1.7. Задачи для самостоятельного решения
- •Тема 2. Химическая связь
- •2.1. Ковалентная связь
- •2.2. Гибридизация атомных орбиталей
- •2.3. Ионная химическая связь
- •2.4. Металлическая связь
- •2.5. Водородная связь
- •2.6. Строение твердого тела
- •Тема 3. Элементы химической термодинамики
- •3.1. Основные понятия термодинамики
- •3.2. Внутренняя энергия
- •3.3. Энтальпия
- •3.4. Термохимия. Закон Гесса
- •3.5. Энтропия
- •3.6. Самопроизвольные процессы. Энергия Гиббса
- •3.7. Решение типовых задач
- •3.8. Задачи для самостоятельного решения
- •Тема 4. Химическая кинетика и химическое равновесие
- •4.1. Скорость химической реакции
- •4.2. Зависимость скорости химической реакции от концентрации реагирующих веществ
- •4.3. Зависимость скорости реакции от температуры
- •4.4. Катализ
- •4.5. Химическое равновесие
- •4.6. Смещение химического равновесия. Принцип Ле Шателье
- •4.7. Решение типовых задач
- •4.8. Задачи для самостоятельного решения
- •Тема 5. Растворы. Дисперсные системы
- •5.1. Общие свойства растворов
- •5.2. Способы выражения состава растворов
- •5.3. Теория электролитической диссоциации
- •5.4. Теории кислот и оснований
- •5.5. Ионные реакции в растворах
- •5.6. Ионное произведение воды. Водородный показатель рН
- •5.7. Гидролиз солей
- •5.8. Дисперсные системы и их классификация
- •5.9. Решение типовых задач
- •28,57 Г соли растворены в 71,43 г воды
- •3% Массы раствора составляют 48,84 г
- •Соотношение между рН и рОн
- •5.10. Задачи для самостоятельного решения
- •Тема 6. Окислительно-восстановительные электрохимические процессы
- •6.1. Основные понятия
- •Правила определения степени окисления
- •6.2. Составление уравнений окислительно-восстановительных реакций
- •6.3. Влияние среды на характер протекания реакций
- •6.4. Важнейшие окислители и восстановители
- •6.5. Электрохимические процессы
- •96500 Кл (26,8 а∙ч) – 31,77 г Cu (масса моля эквивалентов)
- •96500 Кл – 1 г (11,2 л– объем моля эквивалентов)
- •6.6. Гальванический элемент Даниэля-Якоби
- •6.7. Окислительно-восстановительные потенциалы
- •6.8. Эдс окислительно-восстановительных реакций
- •6.9. Электролиз расплавов и растворов солей
- •6.10. Некоторые области применения электрохимии
- •6.11. Решение типовых задач
- •6.12. Задачи для самостоятельного решения
- •Тема 7. Химия металлов
- •7.1. Общая характеристика металлов
- •7.2. Химические свойства металлов
- •7.3. Взаимодействие металлов с кислотами
- •Взаимодействие металлов с соляной кислотой.
- •Взаимодействие металлов с азотной кислотой
- •Взаимодействие металлов с серной кислотой
- •7.4. Сплавы
- •7.5. Получение металлов
- •Тема 8. Коррозия и защита металлов
- •8.1. Определение и классификация коррозионных процессов
- •8.2. Химическая коррозия
- •8.3. Электрохимическая коррозия
- •8.4. Возможность коррозии с водородной и кислородной деполяризацией
- •8.5. Защита металлов от коррозии
- •8.6. Решение типовых задач
- •8.7. Задачи для самостоятельного решения
- •Тема 9. Органические полимерные материалы
- •9.1. Классификация полимерных (высокомолекулярных) материалов
- •9.2. Строение полимеров
- •9.3. Кристаллическое и аморфное состояние полимеров
- •9.4. Методы получения полимеров
- •9.5. Применение полимеров
- •Тема 10. Химическая идентификация и анализ вещества
- •10.1. Химическая идентификация вещества
- •Некоторые реагенты для идентификации катионов
- •Классификация анионов по окислительно-восстановительным свойствам
- •Некоторые реагенты для идентификации анионов
- •10.2. Количественный анализ. Химические методы анализа
- •10.3. Инструментальные методы анализа
- •Приложение
- •Важнейшие единицы си и их соотношение с единицами других систем
- •Приставки для дольных и кратных единиц си
- •Термодинамические характеристики некоторых веществ при 298 к
- •Стандартные потенциалы металлических
- •Энергия разрыва связи
- •Электроотрицательность элементов по Полингу
- •Стандартные окислительно-восстановительные потенциалы элементов
- •Растворимость соединений
- •Обозначения: р – растворимый, м – малорастворимый, н – нерастворимый,
- •Константы диссоциации Кд слабых электролитов
- •Распределение электронов в атоме
- •Список литературы
- •Крепышева Ирина Вадимовна
- •Учебное пособие для самостоятельной работы студентов
- •Нехимических специальностей и направлений
7.5. Получение металлов
Распространенность и состояние металлов в природе. К наиболее распространенным в природе металлам относятся алюминий, железо, кальций, магний и титан. Распространенность их в литосфере (на глубину до 16 км) равна:
Элемент |
Al |
Fe |
Ca |
Na |
K |
Mg |
Ti |
Массовые доли, % |
8,8 |
4,65 |
3,6 |
2,64 |
2,5 |
2,1 |
0,57 |
Молярные доли, % |
6,6 |
1,8 |
2,0 |
2,4 |
1,4 |
2,0 |
0,22 |
Распределение металлов в земной коре может быть равномерным (рассеянные металлы) или неравномерным (в виде месторождений). Небольшая часть металлов может находиться в земной коре в свободном виде (виде простых веществ): платиновые металлы, золото, серебро, ртуть. Остальные элементы находятся в виде химических соединений с другими элементами (в виде минералов). К наиболее распространенным соединениям относятся силикаты (K3AlSi3O8, Kl2(Si3O10)(OH)2Mg3Si4O10H2 и др.), оксиды (Al2O3, Fe2O3, TiO2, Cu2O, CaO и др.), сульфиды (PbS, HgS, FeS2, ZnS, CuS и др.), галогениды (CaF2, NaCl, MgCl2 и др.), карбонаты (CaCO3, MgCO3, FeCO3 и др.), сульфаты (CaSO4, BaSO4, MgSO4 и др.), фосфаты (CaAl6(PO4)4(OH)2·4H2O, Ca3(PO4)2 и др.).
Методы получения металлов. Методы получения металлов основываются на разных химических реакциях, что обусловлено разными типами природных минералов, из которых получают металлы, и неодинаковыми химическими и физическими свойствами самих металлов.
Методы получения металлов из природных соединений можно разделить на несколько групп:
1. Механическое выделение металлов, находящихся в природе в свободном состоянии.
2. Термическое разложение химических соединений.
3. Вытеснение одного металла из его соединений другим металлом.
4. Электрохимическое восстановление.
5. Методы высокотемпературных химических реакций.
Механическое выделение золота из кварцевых пород основано на его высокой плотности (19,3 г/см3). Методы, использующие амальгирование золота ртутью, исключаются из промышленной технологии из-за высокой токсичности ртути. В свободном виде иногда встречаются в природе серебро и платиновые металлы, редко – медь. Эти металлы можно отделять от пустой породы механическими методами.
Термическое разложение химических соединений используют как для получения металлов, так и для очистки их от примесей. Некоторые соединения металлов легко разлагаются при нагревании, при этом металлы выделяются в свободном состоянии. К такой группе соединений относятся карбонилы металлов, например, Ni(CO)4. Карбонил никеля получают при 5-150˚С, а разлагают при 230˚С:
Ni(к)
+ 4СО(г)Ni(CO)4(г)
Ni(к)
+ 4CO(г).
Электрохимическое восстановление металлов проводят как в растворах, так и в расплавах солей. Вытеснение одного металла из его соединения другим металлом, более активным, протекает в соответствии с величинами их электродных потенциалов. Например:
Fe(к) + Cu2+(p) → Fe2+(p) + Cu(к).
Бедную руду, содержащую CuS, обжигают на воздухе, и образующийся оксид меди переводят в раствор в виде CuSO4. Металлическую медь выделяют из раствора с помощью железного скрапа.
Электрохимическое восстановление металлов оуществляется путем электролиза расплавов или растворов их солей. Электролизом расплавов солей получают наиболее активные металлы – Na, K, Mg, Al.
При электролизе расплава NaCl на электродах происходят следующие процессы:
катод: Na+(ж) + е- → Na(ж) (восстановление),
анод: Cl-(ж) → 1/2Cl2(г) + е- (окисление).
Электролиз водных растворов солей металлов (CuSO4, NiSO4, CoSO4, CdSO4 и др.) используют преимущественно для электрорафинирования металлов, то есть для получения их в состоянии высокой чистоты. Эти процессы составляют основу гидрометаллургии.
Методы высокотемпературных химических реакций составляют основу пирометаллургических процессов. Целью этих процессов является восстановление металлов из их оксидов и некоторых других соединений. В качестве восстановителей используют С (кокс), Н2, Mg, Ca, Al или другие (активные) металлы.
Уравнения основных реакций восстановления металлов из их соединений можно представить в упрощенном виде:
,
,
,
,
,
,
,
.