Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Диссертация на соискание учёной степени

.pdf
Скачиваний:
34
Добавлен:
23.02.2015
Размер:
5.16 Mб
Скачать

57.Noble, D., Varghese, A., Kohl, P. and Noble, P., Inproved Guinea-pig ventricular cell model incorporating a diadic space, Ikr and Iks, and lengthand tension-dependent processes. Can. J. Cardiol., 1998. 14: p. 123–134. 104

58.Puglisi, J.L., Wang, F. and Bers, D.M., Modeling the isolated cardiac myocyte. Prog Biophys Mol Biol, 2004. 85(2-3): p. 163–78. 104

59.Faber, G.M. and Rudy, Y., Action potential and contractility changes in (i) overloaded cardiac myocytes: a simulation study. Biophys J, 2000. 78: p. 2392–404. 104

60.Luo, C.H. and Rudy, Y., A dynamic model of the cardiac ventricular action potential: I. Simulations of ionic currents and concentration changes. Circ Res, 1994.

74:p. 1071–1096. 104, 105, 106

61.Priebe, L. and Beuckelmann, D.J., Simulation study of cellular electric properties in heart failure. Circ Res, 1998. 82(11): p. 1206–23. 104

62.Rice, J.J., Jafri, M.S. and Winslow, R.L., Modeling short-term interval-force relations in cardiac muscle. Am J Physiol, 2000. 278: p. H913

63.Stern, M.D., Song, L.S., Cheng, H., Sham, J.S., Yang, H.T., Boheler, K.R. and Rios, E., Local control models of cardiac excitation-contraction coupling. A pos-sible role for allosteric interactions between ryanodine receptors. J Gen Physiol, 1999. 113: p. 469–89. 107, 114

64.Soeller C., Cannell M. B. Analysing cardiac excitation–contraction coupling with mathematical models of local control //Progress in biophysics and molecular biology. – 2004. – Т. 85. – №. 2. – С. 141-162.

65.Polyakova, E., et al., Local calcium release activation by DHPR calcium channel openings in rat cardiac myocytes. The Journal of physiology, 2008. 586(16): p. 3839-3854.

66.Santana, L.F., E.G. Kranias, and W.J. Lederer, Calcium Sparks and ExcitationContraction Coupling in Phospholamban‐Deficient Mouse Ventricular Myocytes. The Journal of physiology, 1997. 503(1): p. 21-29.

67.Cannell, M.B. and C. Soeller, Mechanisms underlying calcium sparks in cardiac muscle. The Journal of general physiology, 1999. 113(3): p. 373-376.

161

68.Ferrier, G.R., R.H. Smith, and S.E. Howlett, Calcium sparks in mouse ventricular myocytes at physiological temperature. American Journal of PhysiologyHeart and Circulatory Physiology, 2003. 285(4): p. H1495-H1505.

69.Zima, A.V., et al., Termination of cardiac Ca2+ sparks role of intra-SR [Ca2+], release flux, and intra-SR Ca2+ diffusion. Circulation research, 2008. 103(8): p. e105e115.

70.Мазуров, М., Ритмогенез в синоатриальном узле сердца. Биофизика, 2006. 51(6): p. 1092-1099.

71.Tsien, R.W., R.S. Kass, and R. Weingart, Cellular and subcellular mechanisms of cardiac pacemaker oscillations. The Journal of experimental biology, 1979. 81(1): p. 205-215.

72.Irisawa, H., H.F. Brown, and W. Giles, Cardiac pacemaking in the sinoatrial node. Physiological reviews, 1993. 73(1): p. 197-227.

73.Krebs, J. and M. Michalak, Calcium: A Matter of Life or Death: A Matter of Life or Death. Vol. 41. 2007: Elsevier Science.

74.Покровский В. М. Формирование ритма сердца в организме человека и животных. – Кубань-Книга, 2007.

75.Барабанов С. В. и др. Физиология сердца //СПБ, Специальная литература. – 1998.

76.Verkerk, A.O., A.C.G. van Ginneken, and R. Wilders, Pacemaker activity of the human sinoatrial node: Role of the hyperpolarization-activated current,If. International journal of cardiology, 2009. 132(3): p. 318-336.

77.Baruscotti M., Bucchi A., DiFrancesco D. Physiology and pharmacology of

the cardiac pacemaker (“funny”) current //Pharmacology & therapeutics. – 2005. – Т.

107.– №. 1. – С. 59-79.

78.Wilders, R., Computer modelling of the sinoatrial node. Medical & biological engineering & computing, 2007. 45(2): p. 189-207.

79.Priebe, L. and D.J. Beuckelmann, Simulation study of cellular electric properties in heart failure. Circulation Research, 1998. 82(11): p. 1206-1223.

162

80.Bozler, E., Tonus changes in cardiac muscle and their significance for the initiation of impulses. American Journal of Physiology--Legacy Content, 1943. 139(3): p. 477-480.

81.Rosen, M.R., et al., Genes, stem cells and biological pacemakers. Cardiovascular research, 2004. 64(1): p. 12-23.

82.Vinogradova, T.M., et al., Rhythmic ryanodine receptor Ca2+ releases during diastolic depolarization of sinoatrial pacemaker cells do not require membrane depolarization. Circulation research, 2004. 94(6): p. 802-809.

83.Kurata, Y., et al., Roles of L-type Ca2+ and delayed-rectifier K+ currents in sinoatrial node pacemaking: insights from stability and bifurcation analyses of a mathematical model. American Journal of Physiology-Heart and Circulatory Physiology, 2003. 285(6): p. H2804-H2819.

84.Lakatta, E.G., V.A. Maltsev, and T.M. Vinogradova, A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the

timekeeping mechanism of the heart’s pacemaker. Circulation research, 2010. 106(4):

p.659-673.

85.Vinogradova, T.M., et al., High Basal Protein Kinase A–Dependent

Phosphorylation Drives Rhythmic Internal Ca2+ Store Oscillations and Spontaneous

Beating of Cardiac Pacemaker Cells. Circulation research, 2006. 98(4): p. 505-514.

86.Bogdanov, K.Y., et al., Modulation of the transient outward current in adult rat ventricular myocytes by polyunsaturated fatty acids. American Journal of Physiology-Heart and Circulatory Physiology, 1998. 274(2): p. H571-H579.

87.Bogdanov, K.Y., T.M. Vinogradova, and E.G. Lakatta, Sinoatrial Nodal Cell Ryanodine Receptor and Na+-Ca2+ Exchanger Molecular Partners in Pacemaker Regulation. Circulation research, 2001. 88(12): p. 1254-1258.

88.Kurata, Y., et al., Dynamical description of sinoatrial node pacemaking: improved mathematical model for primary pacemaker cell. American Journal of Physiology-Heart and Circulatory Physiology, 2002. 283(5): p. H2074-H2101.

163

89.Maltsev, V.A., T.M. Vinogradova, and E.G. Lakatta, The emergence of a general theory of the initiation and strength of the heartbeat. Journal of pharmacological sciences, 2006. 100(5): p. 338-369.

90.Maltsev, V.A. and E.G. Lakatta, Synergism of coupled subsarcolemmal Ca2+

clocks and sarcolemmal voltage clocks confers robust and flexible pacemaker function in a novel pacemaker cell model. American Journal of Physiology-Heart and Circulatory Physiology, 2009. 296(3): p. H594-H615.

91. Maltsev, V.A. and E.G. Lakatta, Dynamic interactions of an intracellular Ca2+ clock and membrane ion channel clock underlie robust initiation and regulation of cardiac pacemaker function. Cardiovascular research, 2008. 77(2): p. 274-284.

92.Maltsev, A.V., et al., Synchronization of Stochastic Ca2+ Release Units Creates a Rhythmic Ca2+ Clock in Cardiac Pacemaker Cells. Biophysical journal, 2011. 100(2): p. 271-283.

93.Shannon, T.R., et al., A mathematical treatment of integrated Ca dynamics within the ventricular myocyte. Biophysical journal, 2004. 87(5): p. 3351-3371.

94.Hamilton, S.L. and I.I. Serysheva, Ryanodine receptor structure: progress and challenges. Journal of Biological Chemistry, 2009. 284(7): p. 4047-4051.

95.Ashley, R.H. and A.J. Williams, Divalent cation activation and inhibition of single calcium release channels from sheep cardiac sarcoplasmic reticulum. The Journal of general physiology, 1990. 95(5): p. 981-1005.

96.Koshino, K. and T. Ogawa, Domino effects in photoinduced structural change in one-dimensional systems. Journal of the Physical Society of Japan, 1998. 67: p. 2174.

97.Koshino, K. and T. Ogawa, Photoinduced nucleation theory in onedimensional systems. Physical Review B, 1998. 58(22): p. 14804.

98.Fujimoto, M., The physics of structural phase transitions. 2005: New York: Springer.

99.Nasu, K., Photoinduced phase transitions. 2004: World Scientific Publishing Company.

164

100.Шайтан, К., et al., Динамический молекулярный дизайн био-и

наноструктур. Российский химический журнал, 2006. 50(2): p. 53-65.

101.Moskvin A. S. Photo-induced phase separation effect in cuprates //Journal of Physics: Conference Series. – IOP Publishing, 2005. – Т. 21. – №. 1. – С. 106.

102.Левич, В.Г., В.А. Мямлин, and Ю.А. Вдовин, Курс теоретической физики. Vol. 1. 1969: Наука.

103.Рубин, А., Биофизика: В 2-х кн. Учеб. для биол. спец вузов. Кн. 1. Теоретическая биофизика. М.: Высш. шк, 1987.

104.Иваницкий Г. Р., Кринский В. И., Сельков Е. Е. Математическая биофизика клетки. – Наука, 1978.

105.Coffey W. T., Kalmykov Y. P., Waldron J. T. The Langevin equation: with applications to stochastic problems in physics, chemistry, and electrical engineering.

World Scientific Publishing Company, 2004. – Т. 14.

106.Zahradnikova, A., et al., Rapid activation of the cardiac ryanodine receptor by submillisecond calcium stimuli. The Journal of general physiology, 1999. 114(6): p. 787-798.

107.Zahradnikova, A., M. Dura, and S. Gyorke, Modal gating transitions in cardiac ryanodine receptors during increases of Ca2+ concentration produced by photolysis of caged Ca2+. Pflugers Archiv, 1999. 438(3): p. 283-288.

108.Ландау, Л. and Е. Лифшиц, Квантовая механика. нерелятивистская теория, т. 3. ЛД Ландау, ЕМ Лифшиц–М.: Наука, 1989.

109.Atkins P. W., Friedman R. S. Molecular quantum mechanics. – Oxford : Oxford university press, 1997. – Т. 3.

110.Шайтан, К. and А. Рубин, Изотопные эффекты в реакциях туннелирования электронов в биологических системах и конформационная подвижность белков. Молекуляр. биология, 1981. 15(2): p. 368.

165

111.Keener, J.P. and J. Sneyd, Mathematical physiology. Vol. 8. 1998: Springer.

112.Greenstein, J.L., R. Hinch, and R.L. Winslow, Mechanisms of excitationcontraction coupling in an integrative model of the cardiac ventricular myocyte. Biophysical journal, 2006. 90(1): p. 77-91.

113.Greenstein, J.L. and R.L. Winslow, An Integrative Model of the Cardiac Ventricular Myocyte Incorporating Local Control of Ca2+ Release. Biophysical journal, 2002. 83(6): p. 2918-2945.

114.Maruyama, G., Continuous Markov processes and stochastic equations. Rendiconti del Circolo Matematico di Palermo, 1955. 4(1): p. 48-90.

115.Kloeden, P.E. and E. Platen, Numerical solution of stochastic differential equations. Vol. 23. 1992: Springer Verlag.

116.Федер Е., Данилов Ю. А., Шукуров А. Фракталы. – Мир, 1991. – Т. 254.

117.Иродов И. Е. Основные законы механики. – М. : Высш. шк., 1997.

118.Вентцель А. Д. Курс теории случайных процессов. – М. : Наука.

Физматлит, 1975.

119.Sitsapesan, R., R.A. Montgomery, and A.J. Williams, New insights into the gating mechanisms of cardiac ryanodine receptors revealed by rapid changes in ligand concentration. Circulation research, 1995. 77(4): p. 765-772.

120.Terentyev, D., et al., Luminal Ca2+ controls termination and refractory behavior of Ca2+-induced Ca2+ release in cardiac myocytes. Circulation research, 2002. 91(5): p. 414-420.

121.Magleby, K.L. and B.S. Pallotta, Calcium dependence of open and shut interval distributions from calcium-activated potassium channels in cultured rat muscle. The Journal of physiology, 1983. 344(1): p. 585-604.

122.Laver, D.R. and B.N. Honen, Luminal Mg2+, a key factor controlling RYR2mediated Ca2+ release: cytoplasmic and luminal regulation modeled in a tetrameric channel. The Journal of general physiology, 2008. 132(4): p. 429-446.

166

123.Copello, J., et al., Differential activation by Ca2+, ATP and caffeine of cardiac and skeletal muscle ryanodine receptors after block by Mg2+. Journal of Membrane Biology, 2002. 187(1): p. 51-64.

124.Pikovsky, A., M. Rosenblum, and J. Kurths, Synchronization: a universal concept in nonlinear sciences. Vol. 12. 2003: Cambridge university press.

125.Kut, C., V. Golkhou, and J.S. Bader, Analytical approximations for the amplitude and period of a relaxation oscillator. BMC systems biology, 2009. 3(1): p. 6.

126.Wehrens, X.H.T., et al., FKBP12. 6 deficiency and defective calcium release channel (ryanodine receptor) function linked to exercise-induced sudden cardiac death. Cell, 2003. 113(7): p. 829-840.

127.Chen, W., J.A. Wasserstrom, and Y. Shiferaw, Role of coupled gating between cardiac ryanodine receptors in the genesis of triggered arrhythmias. American Journal of Physiology-Heart and Circulatory Physiology, 2009. 297(1): p. H171-H180.

128.Vest, J.A., et al., Defective cardiac ryanodine receptor regulation during atrial fibrillation. Circulation, 2005. 111(16): p. 2025-2032.

129.Jiang, D., et al., Enhanced store overload induced Ca2+ release and channel sensitivity to luminal Ca2+ activation are common defects of RyR2 mutations linked to ventricular tachycardia and sudden death. Circulation research, 2005. 97(11): p. 1173-1181.

130.Lehnart, S.E., et al., Stabilization of cardiac ryanodine receptor prevents intracellular calcium leak and arrhythmias. Proceedings of the National Academy of Sciences, 2006. 103(20): p. 7906-7910.

167

ОСНОВНЫЕ ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ

Статьи в ведущих рецензируемых научных журналах и изданиях:

А1. Рывкин А.М. Электронно-конформационная теория функционирования рианодиновых каналов в клетках водителей сердечного ритма // Вестник уральской медицинской академической науки, 2013. – №2. – С. 54-58

А2. Рывкин А.М. Моделирование автоволновой кальциевой динамики в кар-

диомиоцитах в рамках электронно-конформационной теории / А.М. Рывкин,

А.С. Москвин, О.Э. Соловьева, В.С. Мархасин // Доклады Академии Наук,

2012. – Т. 444, №5. – С. 572-579

А3. Moskvin A.S. Electron-Conformational Transformations in Nanoscopic RyR

Channels Governing Both the Heart’s Contraction and Beating / Moskvin A.S.,

Ryvkin A.M., Solo-vyova O.E., Markhasin V.S. // Pis’ma v ZhETF, 2011. – Vol. 93

(7). – P. 446-452

Статьи в ведущих зарубежных научных журналах и изданиях:

А4. Ryvkin A. M. Electron-Conformational Model of SR-Based Ca2+ Clock Mode / A. M. Ryvkin, A. S. Moskvin, O. E. Solovyova, V. S. Markhasin // Biophysical Journal, 2010. - Vol. 98(3). - P. 336a

А5. Ryvkin A.M. Analysis of the RyR-Channel Stochastic Dynamics in the Electron-Con-formational Model / A.M. Ryvkin, A.S. Moskvin, O.E. Solovyova // Proceedings of The Physiological Society, 2009. – Vol. 15. P. D1

А6. Moskvin A.S. Stochastic Dynamics of Release Unit in a Cardiac Cell in Electron-Con-formational Model / A.S. Moskvin, A.M. Ryvkin, O.E. Solovyova, V.S. Markhasin // Biophysical Journal, 2009. - Vol. 96(3) - P. 518a

А7. Moskvin A.S. Spark Generating Stochastic Dynamics of Release Unit in a Cardiac Cell / A.S. Moskvin, A.M. Ryvkin, O.E. Solovyova, V.S. Markhasin, P. Kohl // Biophysical Journal, 2008. - Vol. 94 (2) - P. 312a

Материалы конференций:

А8. Рывкин А.М. Моделирование динамики ионных каналов в кардиомиоците в рамках электронно-конформационной теории / А.М. Рывкин,

Н.М. Зорин, А.С. Москвин // XIII Всероссийская школа-семинар по проблемам

168

физики конденсированного сос-тояния вещества: тезисы докладов. -

Екатеринбург, 2012. - С. 256

А9. Ryvkin A.M. Modelling the Autooscillatory Calcium Dynamics in Sinoatrial Node Cell in the Framework of Electron-Conformational Model / A.M. Ryvkin, A.S.

Moskvin, O.E. Solovyova, V.S. Markhasin // “Biological Motility – Fundamental and

Applied Science”: Abstracts. - Puschino, 2012. - P. 172-174

А10. Рывкин А. М. Электронно-конформационная модель молекулярных нанокластеров / А. М. Рывкин, А.С. Москвин // 13я Международная зимняя школа физиков-теоретиков "Коуровка": сборник тезисов. – Екатеринбург, 2010.

- С. 87

А11. Рывкин А. М. Моделирование автоволновой динамики клеток сердечного ритма / А.М. Рывкин // 17я Всероссийская научная конференция студентов-физиков и молодых ученых: сборник тезисов. – Екатеринбург, 2011.

- С. 407

А12. Ryvkin A.M. Electron-Conformational Model of SR-based Ca2+ Clock Mode in Sinoatrial Cells / A.M. Ryvkin, A.S. Moskvin, O.E. Solovyova, V.S. Markhasin // «New Horizons in Calcium Signaling»: Abstracts. - Beijing, China, 2010. - P. 175

А13. Ryvkin A.M. RyR-Channel Stochastic Dynamics in the ElectronConformational Model. Kinetic Parameters / A.M. Ryvkin, A.S. Moskvin, O.E. Solovyova, V.S. Markhasin// International Conference "PhysCell 2009 - From the edge to the heart": Abstract Book. - Primoshten, Croatia, 2009. – P. 222

А14. Ryvkin A.M. Electron-Conformational Model of the Ryanodine Channel in a Cardiac Cell. Kinetic Properties / Ryvkin A.M., Moskvin A.S. // International Conference on Interdisciplinary Mathematical and Statistical Techniques: Abstract book. - Plzen, Czech Republic, 2009. - P. 68

А15. Рывкин А. М. Анализ результатов моделирования стохастической динамики ионных каналов в кардиомиоците в рамках электронноконформационной теории / А. М. Рывкин, А.С. Москвин, О.Э. Соловьева //

Межвузовская конференция "СПИСОК-2009", УрГУ: тезисы докладов. -

Екатеринбург, 2009. – С. 93-96

169

А16. Moskvin A.S. Modelling the Gating of the Cardiac Ryanodine Channel / A.S. Moskvin, A.M. Ryvkin, O.E. Solovyova, V.S. Markhasin // Conference

“Mathematics. Computing. Education”: Abstract book. - Pushchino, 2009. - P. 116

А17. Moskvin A.S. Electron-Conformational Model of Molecular Nanoclusters / A.S. Moskvin, A.M. Ryvkin, A.V. Korolev // 3rd International Advanced Scool: Molecular Switching and Functional Materials & 5th International Symposium on Molecular Materials: Electronics, Photonics and Spintronics: Abstract book. - Universite de Rennes, France, 2009. - P. 96

А18. Moskvin A.S. Novel Stochastic Model for Calcium Release Unit in Cardiomyocite / A.S. Moskvin, A.M. Ryvkin, O.E. Solovyova, V.S. Markhasin // Biological Motility. Achievements and Perspectives: Abstracts. - Pushchino, 2008. - P. 176

170