
- •Оглавление
- •3.3. Математические модели надежности аппаратуры ис 36
- •4.Расчет аппаратурной надежности ис на этапе проектирования 45
- •4.5. Расчет надежности ремонтируемых систем 57
- •5. Методы обеспечения контроля и диагностики аппаратуры ис 66
- •1. Основные понятия, термины и определения
- •1.1. Система и ее элементы
- •1.2. Понятия надежности и отказа системы (элемента)
- •1.3 Основные определения в области качества и надежности программного обеспечения (по) ис
- •1.4. Основные определения в области надежности подсистемы человек - оператор ис
- •1.5. Проблема стандартизации в области надежности и качества
- •2. Факторы, влияющие на надежность информационных систем
- •2.1. Общая характеристика факторов, влияющих на надежность ис
- •2.2. Влияние внешних воздействующих факторов при эксплуатации ис
- •2.3. Общие принципы обеспечения надежности сложных технических систем
- •Показатели надежности аппаратуры ис и используемые модели надежности
- •Основные показатели надежности невосстанавливаемых объектов
- •3.1.1. Вероятность безотказной работы
- •3.1.2. Вероятность отказа
- •3.1.3. Средняя наработка до отказа
- •3.1.4. Интенсивность отказов
- •3.2. Показатели надежности восстанавливаемых объектов
- •3.2.1. Показатели безотказности восстанавливаемых объектов
- •3.2.1.1. Параметр потока отказов
- •3.2.1.2. Средняя наработка на отказ объекта
- •3.2.2. Показатели ремонтопригодности
- •3.2.2.1. Вероятность восстановления
- •3.2.2.2. Среднее время восстановления
- •3.2.2.3. Интенсивность восстановления
- •3.2.3. Показатели долговечности
- •3.2.3. Комплексные показатели надежности
- •3.2.3.1. Коэффициент готовности
- •3.2.3.2. Коэффициент оперативной готовности
- •3.2.3.3. Коэффициент технического использования
- •3.2.3.4. Коэффициент сохранения эффективности
- •3.3. Математические модели надежности аппаратуры ис
- •3.3.1. Модели потоков событий
- •3.3.1.1. Простейший поток отказов
- •3.3.1.2. Потоки Эрланга
- •Законы распределения дискретных случайных величин
- •3.3.2.1. Биномиальный закон распределения числаn появления событияАвmнезависимых испытаниях.
- •3.3.2.2. Пуассоновское распределение появления n событий за время наблюдения t
- •3.3.3. Законы распределения непрерывных случайных величин
- •3.3.3.1. Экспоненциальное распределение
- •3.3.3.2. Нормальное распределение
- •3.3.3.3. Гамма - распределение
- •3.3.4. Марковские процессы
- •Расчет аппаратурной надежности ис на этапе проектирования
- •4.1. Составление логических схем
- •4.2. Расчет надежности нерезервированной невосстанавливаемой системы
- •4.3. Учет влияния режимов работы элементов на надежность систем
- •4.4. Расчет надежности невосстанавливаемых резервированных систем
- •4.4.1. Резервирование с целой кратностьюk с постоянно включенным резервом или нагруженное резервирование замещением с абсолютно надежными переключателями
- •4.4.1.1. Общее резервирование
- •4.4.1.2 Раздельное резервирование
- •4.4.1.3. Общее резервирование с дробной кратностью
- •4.4.2. Резервирование замещением ненагруженное и облегченное с абсолютно надёжными переключателями.
- •4.4.2.1.Общее ненагруженное резервирование замещением
- •4.4.2.2. Облегченное резервирование замещением
- •4.4.3. Резервирование с учетом надежности переключателей.
- •4.4.4. Скользящее резервирование
- •4.5. Расчет надежности ремонтируемых систем
- •4.5.1. Общая характеристика методов расчета надежности ремонтируемых систем
- •4.5.2. Вычисление функций готовности и простоя нерезервированных систем
- •4.5.3. Особенности расчета резервированных восстанавливаемых систем
- •4.5.3.1. Ненагруженное резервирование с восстановлением
- •4.5.3.2. Нагруженное резервирование замещением с восстановлением
- •4.5.4. Расчет надежности восстанавливаемых систем, перерывы, в работе которых в процессе эксплуатации недопустимы
- •4.5.5. Примеры решения типовых задач
- •5. Методы обеспечения контроля и диагностики аппаратуры ис
- •5.1. Контроль технического состояния ис в процессе эксплуатации
- •5.1.1. Основные определения в области контроля ис
- •Методы контроля аппаратуры ис
- •5.1.2.1. Оперативные методы контроля аппаратуры
- •5.1.2.2. Тестовый контроль аппаратуры
- •5.2. Основы диагностирования информационных систем
- •5.2.1. Метод построения квазиоптимальных тестов Шеннона – Фано
- •5.2.2. Организация тестирования персонального компьютера
- •6. Основы моделирования и расчета надежности программного обеспечения
- •6.1. Модель анализа надежности программных средств
- •6.2. Статистика ошибок по ис
- •6.3. Количественные характеристики надежности по ис
- •Модели надежности программного обеспечения
- •6.4.1. О возможности построения априорных мнп
- •6.4.2. Непрерывные эмпирические модели надежности по (нэмп)
- •6.4.3. Дискретные эмпирические модели надежности по (дэмп)
- •6.5. Способы обеспечения и повышения надежности по
- •6.5.1. Основы организации тестирования программ
- •6.5.1.1. Особенности тестирования « белого ящика»
- •6.5.1.2. Особенности функционального тестирования по ( методы тестирования «черного ящика»)
- •6.5.1.3. Организация процесса тестирования программного обеспечения
- •6.5.2. Способы повышения оперативной надежности по
- •7. Основы организации испытаний ис на надежность
- •7.1. Виды испытаний на надежность
- •7.2. Принципиальные особенности организации испытаний на надежность ис
- •Основы организации определительных испытаний на надежность
- •7.3.1. Точечные оценки показателей безотказности и ремонтопригодности
- •7.3.2. Оценка показателей надежности доверительным интервалом
- •7.3.2.1. Определение доверительного интервала для средней наработки на отказ
- •7.3.2.2. Определение доверительного интервала для вероятности безотказной работы по числу обнаруженных при испытаниях отказов
- •7.4. Основы организации контрольных испытаний
- •Основы надежности подсистемы «человек-оператор» ис
- •Основные понятия и определения
- •8.2. Влияние человека - оператора на надежность ис
- •Показатели безошибочности человека-оператора
- •8.2.2. Способы борьбы с ошибками оператора
- •Заключение
3.3.1. Модели потоков событий
3.3.1.1. Простейший поток отказов
Существует множество математических моделей потоков событий. Наиболее часто при решении задач надежности восстанавливаемой аппаратуры используют простейший поток отказов [3.1, 3.2, 3.3, 3.4].
Простейший поток отказов удовлетворяет одновременно трем условиям: стационарности, ординарности, отсутствию последействия.
Стационарность случайного потока событий (времени возникновения отказов) означает, что на любом промежутке времени Δti вероятность возникновения n отказов зависит только от значения n и величины промежутка Δti, и не зависит от сдвига по оси времени. Следовательно, при Δti= Δti+1= Δti+m вероятность появления n отказов по всем интервалам одинакова.
Pn(Δti)= Pn(Δti+1)= … Pn(Δti+m). (3.38)
Условие стационарности означает, что параметр потока отказов ω(t) = λ = const
Ординарность потока означает невозможность появления в один и тот же момент времени более одного отказа, то есть
lim Pn(Δt)=0 (для n>1) . (3.39)
Δt→0
Отсутствие последействия означает, что вероятность наступления n отказов в течение промежутка Δti не зависит от того, сколько было отказов и как они распределялись до этого промежутка времени. Следовательно, факт отказа любого элемента в системе не приведет к изменению характеристик (работоспособности) других элементов системы, если даже система и отказала из-за какого-то элемента.
Если отказы элементов происходят мгновенно, отказ любого элемента приводит к отказу всей системы, старение элементов отсутствует (λ= const), то поток отказов в системе можно считать простейшим.
Свойства простейшего потока
Случайные события, образующие простейший поток, распределены по закону Пуассона [3.1, 3.2]:
при n
0,(3.40)
где Pn(t) - вероятность возникновения в течение времени t ровно n отказов, λ – параметр распределения, совпадающий с параметром потока событий.
Если в выражении (3.3) принять n = 0, то получим
- вероятность безотказной работы объекта за время t при интенсивности отказов λ = const.
Таким образом, при пуассоновском потоке отказов промежуток времени между отказами подчиняется экспоненциальному распределению.
3. Среднее число отказов на отрезке времени [0,t] - W(t) = λt.
3.3.1.2. Потоки Эрланга
Нарушение условий стационарности или наличие последействия приводит к непростейшим потокам событий (отказов). Например, к таким потокам относятся потоки Эрланга к- го порядка, которые возникают при «просеивании» простейшего потока. Поток Эрланга к- го порядка- поток, получающийся в результате сохранения каждого к-го события (отказа) в простейшем потоке. При к=1 поток Эрланга – простейший.
Дифференциальный закон распределения появления события в потоке Эрланга имеет вид:
, (3.41)
где λ – интенсивность простейшего потока отказов.
Выражение (3.4) отвечает гамма- расределению ( см. п. 3.3.3).
Интенсивность потока Эрланга
. (3.42)
Математическое ожидание времени между появлениями событий:
(3.43)
Дисперсия времени между событиями:
.
(3.44)
Можно использовать модели потоки Эрланга к-го порядка при рассмотрении потоков отказов в резервированной системе ( см. раздел 4) с кратностью резервированияk-1.