
- •Предмет и задачи органической химиии, ее место в системе медицинского образования.
- •Концепция гибридизации атомных орбиталей: три валентных состояния атома угерода; строгая и нестрогая гибридизация. Концепция электронных смещений: индуктивный эффект.
- •Концепция электронных смещений: мезомерный эффект.
- •4. Оптическая изомерия. Хиральность. Абсолютная (r/s) и относительная (d/l) конфигурация. Способы разделения рацематов. Стереохимия реакций нуклеофильного замещения и нуклеофильного присоединения.
- •I. Алканы (предельные углеводороды, парафины)
- •Реакции синтеза алканов.
- •2.4.3. Реакции изомеризации
- •Способы получения и природные источники
- •3) Аммонолиз галогеналканов — это взаимодействие галогеналканов с аммиаком, приводящее к получению аминов (или их солей):
- •2. Галогеналканы могут быть получены из спиртов и других галогеналканов с помощью реакции замещения, например:
- •4. Галогеналканы могут быть получены из альдегидов, кетонов и карбоновых кислот действием pCl5, pBr3 или sf4 при нагревании.
- •1) Образование металлоорганического производного (если использется металл, а не заранее приготовленное металлоорганическое соединение):
- •2) Взаимодействие образовавшегося, в данном случае, натрийорганического соединения с другой молекулой алкилгалогенида:
- •Особенности строения, изомерия, физических свойств, химического поведения многоатомных спиртов. Механизмы реакций.
- •2.Получение простых эфиров
- •III. Свойства простых эфиров
- •1. Кислотное расщепление простых эфиров
- •2. Радикальные реакции простых эфиров
- •12. Нитро- и нитрозосоединения: строение, получения, кислотно-основные свойства. Свойства соединений, имеющих α-водородные атомы. Нитроловые кислоты и псевдонитролы.
- •Получение нитросоединений
- •Псевдонитролы
- •13. Тиоспирты и тоиэфиры. Особенности строения, химических свойств. Реакции окисления. Способы получения.
- •2 . Эффект сопряжения
- •4.3.3. Строение и свойства сопряжённых диенов
- •Строение тройной связи
- •Номенклатура алкинов
- •2 Атома с → этан → этин;
- •3 Атома с →пропан → пропин и т.Д.
- •Присоединение галогенов (Cl2 и Br2)
- •2. Присоединение галогеноводородов к алкинам.
- •3. Реакция гидратации (Реакция Кучерова)
- •4. Присоединение hcn.
- •5. Присоединение спиртов.
- •Галогеналканы
- •. Классификация, номенклатура, изомерия
- •3.2.2. Строение и свойства
- •18. Особенности химического поведения непредельных спиртов
- •20.Непредельные альдегиды и кетоны: кетен, акролеин, кротоновый альдегид - особенности их свойств и способов получения
- •23. Производные карбоновых кислот.
- •6.5.2. Строение
- •6.5.3. Химические свойства
- •25.Дикарбоновые кислоты
- •27. Гидроксикислоты: классификация, номенклатура, оптическая изомерия. Химические свойства. Отношение к нагреванию. Способы получения. Способы разделения рацематов. Нахождение в природе.
- •2.1. Получение α-гидроксикислот
- •2.2. Получение β-гидроксикислот
- •2.3. Получение γ-гидроксикислот
- •28. Оксокислоты: номенклатура, изомерия, способы получения и химические свойства.
- •29. Ацетоуксусная кислота и ацетоуксусный эфир: строение, свойства, получение и использование для синтезов.
- •Присоединение этилового спирта к дикетену
- •Сложноэфирная конденсация Кляйзена
- •30. Аминокислоты: номенклатура, изомерия. Способы получения. Химические свойства. Отношение к нагреванию. Лактим-лактамная таутомерия.
- •1. Из карбоновых кислот через их галогенопроизводные в радикале
- •2. Гидролиз пептидов и белков
- •4. Микробиологический синтез
- •Отношение к нагреванию.
- •Лактим-лактамная таутомерия.
- •34. Алициклические углеводороды: номенклатура, строение, свойства. Особенности поведения малых циклов. Терпены, терпеноиды, каротиноиды.
- •34. Алициклические углеводороды: номенклатура, строение, свойства. Особенности поведения малых циклов. Терпены, терпеноиды, каротиноиды.
- •35. Бензол, его строение и свойства. Ароматичность. Реакции присоединения, окисления, замещения в сравнении с предельными и непредельными углеводородами. Методы синтеза бензольного кольца.
- •37.Монозамещенные бензола
- •38. Ароматические углеводы.
- •41.Реакции нуклеофильного замещения в ароматическом кольце.
- •42. Ароматические сульфокислоты.
- •Применение
- •43. Ароматические нитросоединения
- •Свойства: Химические свойства
- •Реакции нуклеофильного замещения
- •44.Фенолы и спирты.
- •Классификация
- •Электронное строение[
- •Физические свойства
- •В живых организмах
- •Химические свойства[
- •1. Реакции с участием гидроксильной группы
- •2. Реакции с участием бензольного кольца]
- •Способы получения[
- •Применение фенолов[
- •Классификация спиртов[
- •Номенклатура спиртов[ Систематическая номенклатура[
- •Другие номенклатуры[
- •10.5.1. Классификация, номенклатура, изомерия фенолов и ароматических спиртов
- •10.5.1. Классификация, номенклатура, изомерия фенолов и ароматических спиртов
- •Строение и физические свойства[
- •Методы синтеза[
- •Химические свойства[
- •Применение[
- •45. Ароматические амины
- •Номенклатура ароматических аминов
- •Изомерия ароматических аминов
- •Способы получения ароматических аминов Способы получения первичных аминов
- •4. Реакция Гофмана
- •Способы получения вторичных аминов
- •Способы получения третичных аминов
- •Физические свойства ароматических аминов
- •Химические свойства ароматических аминов
- •1. Кислотно-основные свойства аминов
- •1) Основные свойства аминов
- •2. Реакции аминов как нуклеофильных реагентов
- •1. Алкилирование ароматических аминов
- •2. Ацилирование ароматических аминов
- •3. Реакции с альдегидами и кетонами
- •Окисление ароматических аминов
- •3. Реакции электрофильного замещения в бензольном кольце
- •1. Реакция галогенирования
- •2. Реакция сульфирования
- •Реакционная способность[
- •Номенклатура
- •Свойства[
- •Реакционная способность
- •Синтез[
- •Азокрасители[
- •Получение солей диазония
- •Химические свойства
- •1. Замещение на гидроксигруппу
- •2. Замещение на галоген
- •3. Замещение на cn
- •Понятие об азокрасителях
1. Замещение на гидроксигруппу
Соли диазония медленно реагируют с водой с образованием фенолов. Реация протекает даже в ледяном растворе солей диазония, а при повышенных температурах является главной реакцией солей диазония:
Чтобы исключить реакции взаимодействия образовавшегося фенола с солью диазония (реакция азосочетания) для получения фенола соль диазония медленно добавляют к кипящему раствору разбавленной серной кислоты.
2. Замещение на галоген
Замещение диазогруппы на йод протекает легко при смешении соли диазония с раствором йодида калия:
Реакцию замещения диазогруппы на хлор и бром проводят с использованием галогенидов одновалентной меди (редокс – катализатор) – реакция Зандмейера – и свежеприготовленных солей диазония:
Реакция проходит при комнатной температуре или при нагревании. Иногда реакцию проводят, используя медный порошок и галогеноводород (реакция Гаттермана). Схема реакции предусматривает образование радикалоподобных частиц или свободных арильных радикалов:
Методом введения фтора в ароматическое кольцо является реакция Шимана – нагревание фторборатных солей диазония:
3. Замещение на cn
Замещение диазогруппы на цианогруппу проходит при взаимодействии солей диазония с цианидом одновалентной меди:
4. Замещение на водород (дезаминирование)
Замещение диазогруппы на водород можно провести при восстановлении солей диазония. Наиболее часто для восстановления используют фосфорноватистую кислоту Н3РО2:
Восстановление можно проводить и используя этиловый спирт:
5. Замещение на Ar
Одним из способов получения производных дифенила является реакция Гомберга, заключающаяся во взаимодействии соли диазония с ароматическими углеводородами в присутствии щелочи:
Реакции без выделения азота
1. Восстановление солей диазония в арилгидразины
При восстановлении солей диазония рассчитанным количеством хлорида олова (II) при низкой температуре или избытком сульфита натрия при нагревании образуются арилгидразины:
2. Реакции сочетания
В соответствующих условиях соли диазония легко реагируют с фенолами и ароматическими аминами с образованием соединений, в которых атомы азота диазогруппы сохраняются. Такие соединения называют азосоединениями, а реакцию их получения – азосочетанием.
Реакция азосочетания протекает по механизму реакций электрофильного замещения, атакующим агентом является катион диазония. Поскольку диазоний-катион слабый электрофил, то он атакует лишь реакционноспособные кольца, содержащие электронодонорные группы (ОН, NH2, NHR, NR2). Замещение обычно происходит в п-положение к активирующей группе, а если оно занято, то в о-положение:
Важен выбор условий протекания реакции.
Ион диазония, являясь электрофилом, в присутствии гидроксид-иона существует в равновесии с неионизированной формой и диазотатом:
Если рассматривать только электрофильный реагент, то реакции азосочетания благоприятствует кислая среда. Присоединение протона к аминогруппе амина в кислой среде приводит к иону аммония и пассивирует электрофильное замещение в кольцо, соль амина не будет реагировать со слабым электрофилом, т.е. чем выше кислотность среды, тем ниже скорость азосочетания:
Аналогичная ситуация наблюдается для фенола. В водном растворе фенол находится в равновесии с фенолят-ионом:
Наличие полного отрицательного заряда делает заместитель –О- более сильным донором электронов, чем -ОН – группа. По этой причине фенолят- ион в реакциях электрофильного замещения более реакционноспособен, чем неионизированный фенол, т.е. чем выше кислотность среды, тем ниже скорость сочетания. Поэтому условия, в которых наиболее быстро протекает азосочетание, являются компромиссными: раствор не должен быть щелочным, чтобы концентрация диазоний-иона не стала низкой, раствор не должен быть слишком кислым, чтобы концентрация свободного амина или феонлят-иона не стала низкой. Обычно сочетание с фенолами проводят в слабощелочной среде, а с аминами – в слабокислой.
В случае первичных и вторичных аминов сочетание проходит с образованием диазоаминосоединений: