Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
глава 1 КЛЕТКА И ТКАНИ.doc
Скачиваний:
38
Добавлен:
07.02.2015
Размер:
7.06 Mб
Скачать

Глава 1. Клетка и ткани

Подробное описание этого процесса можно найти в многочисленных руководствах по ге­нетике.

В конце интерфазы клетка практически под­готовлена к митотическому делению, которое в последующем и наступает. Морфологически различают 4 фазы митоза: профаза, метафаза, анафаза и телофаза (рис. 1.1.32, 1.1.33).

Профаза характеризуется тем, что в этот период происходят интенсивные изменения структуры ядра. На участках эухроматина пре­кращается транскрипция. Они покрываются белками и становятся неотличимыми от зерен гетерохроматина. Затем наступает спирализа-ция хромосом. При этом хромосома становит­ся видимой в световом микроскопе. Вышеука­занный процесс сопровождается исчезновением ядрышка. Таким образом, в начале профазы в ядре образуется плотный клубок, который к концу фазы разрыхляется, и становятся види­мыми хромосомы.

Именно в этой фазе центриоли расходятся к противоположным полюсам клетки, формирует­ся веретено, состоящее из микротрубочек.

Метафаза (следует за профазой). В мета-фазе основные изменения происходят в цито­плазме клетки. Лизосомальные ферменты раст­воряют ядерную оболочку, и спирализованные хромосомы оказываются в цитоплазме. Комп­лекс Гольджи и эндоплазматический ретикулум распадаются на мелкие фрагменты.

На каждом центромере выявляется скопле­ние специальных белков — кинетохор. Сборка микротрубочек на материнских центриолях про­должается. В результате этого процесса фор­мируется биполярное митотическое веретено, состоящее из микротрубочек и ассоциирован­ных с ними белков. Различают несколько ви­дов микротрубочек. Часть микротрубочек рас­ходится от центриоли во все стороны. Часть их образует астральную лучистость. Другая их часть направлена к экватору клетки — поляр­ные микротрубочки. Кроме астральных и по­лярных микротрубочек от полюсов отходят ки-нетохорные микротрубочки, т. е. те, которые в области экватора прикрепляются к кинетохо-рам хромосом. В клетках человека каждый ки­нетохор связан с 20—40 микротрубочками.

Этап формирования веретена обозначают как прометафазу. В ходе собственно метафазы хромосомы перемещаются и располагаются в одной плоскости перпендикулярно к оси между полюсами. Образуется фигура, называемая ма­теринской звездой. В результате упорядочения положения хромосом система микротрубочек также упорядочивается. Они теперь образуют веретено деления (митотическое веретено).

Важно отметить, что именно в метафазе определяют кариотип. У человека в норме ка-риотип характеризуется наличием 23 пар хро­мосом, приведенных на рис. 1.1.34. В метафазе изучают кариотип с диагностической целью при

•1 mm

U lift

90 ну

ДНК


fl/7 П

й

in

2

К II

и

ii 5&

X

6

7 8

9

10

И 12

пл

Аи

Л6

га

АЛ

13

14

15

16

17

18

19 20

л

А А

Y

21

22

ДНК

Рис. 1.1.34. Кариотип человека и уровни упаковки хроматина в ядре:

а — классификация пар хромосом человека; б — молекулярная организация хромосом (по В. Л. Быкову. 1999) двойная спираль ДНК образует нить диаметром 2 нм, которая намотана на блоки дисковндшш фирмы — нуклеосомы (/), входящие в состав нук-леосомнои пиiи (2) диаметром 11 нм Скрученная нуклеосомнля нить образует хроматиновую фибриллу (3) диаметром 30 нм, которая формирует петельные домены (4) диаметром 300 нм. Более и.ютно упакованные петельные до.мены образуют конден­сированные участки хромосомы (5) диаметром 700 нм, являющи­ми ч.н тью метафазной хромосомы (б) размером около 1400 нм

различных врожденных и наследуемых заболе­ваниях.

Анафаза. Анафаза довольно сложный в хи­мическом отношении процесс. В начале анафа­зы наступает внезапное разделение центроме­ры d-хромосомы, в результате чего сестринские хроматиды становятся самостоятельными s-xpo-мосомами.

Микротрубочки начинают укорачиваться, в результате чего хроматиды подтягиваются к центриолям. Сами центриоли удаляются друг от друга в сторону полюсов клетки, в резуль­тате чего образуются две дочерние звезды. В конце анафазы плазматическая мембрана как бы инвагинируется перпендикулярно к про­дольной оси митотического веретена, образуя борозду. В этой области под плазмолеммой по­является сократительное кольцо, состоящее из

Клетка

23

a U

актин- и миозинсодержащих нитей. Завершает деление телофаза.

Телофаза. Как указано выше, к концу ана­фазы и началу телофазы в середине клетки об­разуется цитоплазматическая перетяжка, кото­рая постепенно углубляется и, в конце концов, полностью разделяет клетку на две равные час­ти, содержащие идентичный набор хромосом. После этого вновь появляется ядро, а хромосо­мы «распадаются» с образованием глыбок хро­матина. Примерно в середине телофазы начи­нается образование нитчатой, а затем грану­лярной частей нуклеонеммы. К концу телофазы полностью сформировано ядрышко. Из мемб­ранных пузырьков происходит формирование аппарата Гольджи, эндоплазматической сети. На этом митотический цикл завершается, и клетка входит в интерфазу.

Вышеприведенные данные характеризуют основной тип клеточного деления — митоз. Но существуют и другие типы деления. Это эндомитоз. Морфологически при эндомитозе удвоение числа хромосом происходит внутри ядерной оболочки без ее разрушения и фор­мирования веретена деления. При повторных эндомитозах число хромосом в ядре может зна­чительно увеличиваться и развивается так на­зываемая полиплоидия. Сопровождается этот процесс значительным увеличением объема яд­ра. Полиплоидия сопровождается значитель­ным увеличением функциональной активности клеток. Полиплоидия характерна как в норме, так и при различных патологических состояни­ях эндотелия роговой оболочки.

Полиплоидия развивается и при митоти-ческом делении, при котором не происходит цитотомии. При последующем делении такой двуядерной клетки хромосомные наборы ядер объединяются в метафазе, приводя к образова­нию двух дочерних полиплоидных клеток. На­личие полиплоидных клеток (тетра-, окта- и т.д.) является нормальным состоянием ряда тканей организма человека.

Большое биологическое значение имеет еще один тип деления — мейоз, в результате кото­рого формируются половые клетки. Основной смысл мейоза сводится к делению, при котором достигается уменьшение количества хромосом в клетке в два раза. Обсуждение этого типа деления выходит за рамки данной книги. Более подробные сведения можно получить в боль­шом количестве руководств по цитологии.

В литературе описан еще один тип деле­ния — амитоз. До сих пор обсуждаются вопро­сы возможности существования подобного типа деления. Считают, что при таком делении исче­зает биологический смысл деления, т. е. воз­можность равного распределения генетического материала в двух вновь образованных клетках. Тем не менее морфологи, особенно патологи, довольно часто наблюдают прямое (амитотичес-кое) деление.

1.1.5. Межклеточные соединения

Межклеточное пространство. Между цито-плазматическими мембранами соседних клеток обнаруживается равномерное светлое про­странство шириной 15 нм. Это пространство нередко расширяется или сужается как в нор­ме, так и при патологических состояниях. Не­смотря на наличие межклеточного простран­ства, клетки довольно сильно сцеплены между собой при помощи специализированных органо­идов различного типа (рис. 1.1.35). На особен­ностях строения этих органоидов мы и остано­вимся ниже.

Рис. 1 1.35. Cxi'Mii гическое изображение межклеточных контактов различного типа (по tiogan et al., 1972):

ii.iuiiii.h- кл-динеиие; 2 — :ич мосома; 3—ще.к-вой контакт I 'м .-I viz)); б — запмр.иощая зона [cmpt'-thu)

Десмосома (macula adhearens). Рядом рас­положенные клетки могут соединяться между собой при помощи локальных уплотнений — десмисим (рис. 1.1.36). Этот тип органоидов относится к адгезивным (контакты типа пятна слипания). При формировании подобного типа контакта цитоплазматические мембраны сосед­них клеток не сливаются, а как бы «прилипа­ют» благодаря наличию межклеточного веще­ства. Особенно выражен подобный тип меж­клеточных контактов в эпителиальных тканях (эпидермис, эпителий роговицы, нейроэпите-лиальные структуры).

24