Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основы автоматизации производства.doc
Скачиваний:
381
Добавлен:
30.05.2020
Размер:
13.24 Mб
Скачать

2. Задающие устройства

Большинство задающих устройств состоит из трех основных элементов: привода, носителя программы и элемента настройки. В зависимости от конструктивного оформления устройства отдельные элементы могут быть функционально совмещены.

Наиболее распространенными приводами задающих устройств непрерывного действия являются синхронные электрические двигатели и часовые механизмы. В качестве носителей программы в задающих устройствах непрерывного действия обычно используют механические устройства, рычажные механизмы и функциональные потенциометры.

Механическими носителями программы в задающих устройствах непрерывного действия являются кулачковые механизмы различной конструкции. Назначение кулачковых механизмов состоит в преобразовании вращательного движения кулачка или прямолинейного движения кулачковой линейки в качательное или прямолинейное движение щупа толкателя. С точки зрения обеспечения постоянного контакта кулачка со щупом кулачковые механизмы делят на устройства с силовым замыканием, т. е. открытые (рис. 36, а и г), и устройства с кинематическим замыканием (с канавкой), которые называются закрытыми (рис. 36, б и в).

Кулачки с силовым замыканием проще в изготовлении и обеспечивают большую точность. Закрытые кулачки целесообразно применять при малой мощности привода, так как из-за отсутствия натяжения пружины уменьшается момент сопротивления. Применение закрытых кулачков целесообразно также при больших перемещениях щупов. Выбор между плоскими и цилиндрическими кулачками определяется только конструктивными соображениями, связанными с общей компоновкой задающего устройства.

Рис. 36. Типы кулачков:

а – плоский открытый; б – плоский закрытый; в – цилиндрический закрытый; цилиндрический открытый

Кроме кулачковых механизмов, в качестве механических носителей заданной функции применяют рычажные механизмы, отношение плеч которых используется, например, для установления заданного соотношения расходов в струйном гидравлическом регуляторе.

В электрических программных и следящих регуляторах носители программ, как правило, выполняют в виде функциональных потенциометров.

По способу реализации заданной функции потенциометры подразделяют на профильные, ступенчатые (частный случай профильных), с некруглым винтовым каркасом, с переменным шагом намотки, с секциями, выполненными из провода различного сечения, с дополнительными постоянными резисторами, шунтирующие обмотку, имеющую отводы (рис. 37, ае).

В зависимости от угла поворота движка потенциометры разделяются на три вида: с углом вращения движка менее 360°; с углом вращения движка более 360°; с неограниченным углом вращения движка.

Рис. 37. Функциональные потенциометры:

а – профильный; б – ступенчатый; в – с иекруглым каркасом; г – с переменным шагом намотки; д – с секциями, выполненными из провода различного сечения; е – с шунтирующими резисторами

Сечение каркаса может быть круглым или плоским (с большим отношением высоты к толщине).

В задающих устройствах по соображениям простоты изготовления, возможности получения необходимой точности и взаимозаменяемости наибольшее распространение получили профильные потенциометры с плоскими каркасами и посекционно шунтированные потенциометры с отводами обмотки, выполненной на круглых каркасах.

Погрешность воспроизведения сложных функций для рассмотренных профильных и ступенчатых потенциометров достигает ±2 %.

Всем рассмотренным задающим устройствам непрерывного действия присущи общие недостатки: невозможность изменения программы без выключения регулятора; ограниченное быстродействие; точность задания программы определяется как точностью изготовления деталей, так и точностью их сборки. Перечисленные недостатки отсутствуют у задающих устройств дискретного действия, поэтому они получают в настоящее время все большее распространение.

В качестве привода сменных носителей программ в дискретных задающих устройствах применяют шаговые двигатели различных видов.

Все носители программ дискретных задающих устройств могут быть условно разделены на две категории: сменные и постоянные. К первой категории относятся перфокарты, перфоленты, ленты с нанесенными оптическими метками (использующие как неравномерную прозрачность, так и неравномерную отражательную способность), магнитные ленты и диски (однако два последних носителя при смене не заменяются; стирание старой программы и запись новой равноценны замене). Вторую категорию составляют «схемные» носители программы, представляющие собой многоцепные переключатели, элементы которых связаны между собой в соответствии с заданным алгоритмом функционирования.

Перфокарты изготовляют из плотной бумаги, а перфоленты – из такой же бумаги или лавсана. На перфокарте или перфоленте пробиваются отверстия, совокупность которых составляет код программы. Если цикл программы повторяется, то перфолента может быть свернута в кольцо. Для считывания сигналов с перфокарты или перфоленты используют контактные щетки или фотоэлементы.

Оптические носители (кинолента, бумажная или лавсановая лента) выполняют аналогичные функции, что и перфолента, но считывание с них осуществляется только с помощью различных фотоэлементов. Разрешающая способность оптических носителей в основном определяемая качеством оптической системы, достигает 5–10 знаков на 1 мм длины.

Магнитные носители программы, широко используемые в цифровых ЭВМ, находят неограниченное применение в дискретных задающих устройствах промышленных станков с числовым программным управлением, где они заняли преобладающее место.

В качестве постоянных носителей программы находят широкое применение многоцепные переключатели различного вида, в качестве которых используют шаговые искатели, многоцепные реле времени, переключающие бесконтактные устройства и др.

Соседние файлы в предмете Электротехника