
- •Лекция 1.
- •1.1. Основные понятия и определения.
- •1.2. Требования к модели. Функции модели
- •1.3. Классификация моделей
- •1.3.1. Статические и динамические модели
- •1.3.2. Детерминированные и стохастические модели
- •1.3.3. Классификация математических моделей.
- •Лекция 2. Разновидности математических задач, возникающих при моделировании эмс.
- •2.1. Приближение функций. Интерполяция, экстраполяция, аппроксимация. Приближение периодических функций.
- •2.2. Алгебра комплексных чисел.
- •2.3. Решение систем линейных алгебраических уравнений (слау), матричная алгебра.
- •2.4. Решение систем нелинейных алгебраических уравнений.
- •2.5. Решение систем обыкновенных дифференциальных уравнений.
- •2.6. Решение систем дифференциальных уравненийв частных производных.
- •Лекция 3. Ошибки вычислений.
- •3.1. Общие характеристики вычислительных процессов.
- •3.2. Классификация погрешностей.
- •3.3. Абсолютная и относительная погрешности. Точные десятичные знаки.
- •Лекция 4. Приближение функций
- •4.1. Каноническая форма интерполяционного полинома.
- •4.2. Интерполяционный полином Лагранжа.
- •4.3. Интерполяция сплайнами.
- •4.3.1. Линейный сплайн
- •4.3.2. Кубический сплайн
- •Лекция 5. Аппроксимация функций.
- •5.1. Степенной базис
- •5.2. Базис в виде классических ортогональных полиномов
- •5.3. Малая помехоустойчивость метода наименьших квадратов при решении задач идентификации
- •5.3.1. Теория множественности моделей
- •Лекция 6. Приближение периодических функций.
- •6.1. Общие сведения.
- •6.2. Ряды Фурье.
- •6.3. Функции Уолша.
- •Лекция 7. Решение систем линейных алгебраических уравнений.
- •7.1. Область применения слау в задачах математического моделирования эмс.
- •7.2. Прямые методы решения слау.
- •7.3. Итерационные методы.
- •Лекция 8. Решение нелинейных уравнений.
- •8.1. Отделение корней уравнения.
- •8.1.1. Графический метод отделения корней.
- •8.1.2. Аналитический метод отделения корней.
- •8.2. Метод половинного деления (метод дихотомии).
- •8.3. Метод хорд.
- •8.4. Метод касательных (метод Ньютона-Рафсона).
- •Лекция 9. Численное интегрирование и дифференцирование.
- •9.1. Метод прямоугольников.
- •9.2. Метод трапеций.
- •9.3. Метод Симпсона.
- •9.4. Численное дифференцирование.
- •Лекция 10. Решение систем обычных дифференциальных уравнений (оду).
- •10.1. Метод Эйлера.
- •10.2. Методы Рунге-Кутты.
- •10.2.1. Метод Рунге-Кутты-Мерсона
- •10.3. Метод Адамса.
- •10.4. Визуализация решений оду.
- •Лекция 11. Визуальное моделирование динамических систем.
- •Лекция 12. Численное решение систем дифференциальных уравнений в частных производных.
- •12.1. Уравнения математической физики.
- •12.1.1. Уравнения параболического типа.
- •12.1.2. Уравнения гиперболического типа.
- •12.1.3. Уравнения эллиптического типа
- •12.2. Основные понятия метода сеток.
- •Лекция 13. Решение оптимизационных задач.
- •13.1. Методы безусловной одномерной оптимизации
- •13.1.1. Постановка задачи.
- •13.1.2 Метод обратного переменного шага.
- •13.1.3. Метод половинного деления
- •13.1.4. Метод квадратичной аппроксимации (метод Пауэлла).
- •13.2 Методы оптимизации многомерных функций.
- •13.2.1. Метод покоординатного спуска.
- •13.2.2. Метод наискорейшего спуска (метод градиентов)
- •13.2.3. Метод Нелдера-Мида.
- •13.2.3. Метод пчелиного роя.
- •Лекция 14. Идентификация параметров эмс.
- •14.1. Аппроксимация переходных характеристик элементарными динамическими звеньями
- •14.1.1. Апериодическая переходная характеристика
- •14.1.2.Колебательная переходная характеристика.
1.3. Классификация моделей
Модели можно классифицировать разными образами, но никакой из них не является исчерпывающим. Заметим некоторые типичные группы моделей, которые могут быть положены в основу системы классификации: статистические и динамические; стохастические и детерминированные; дискретные и непрерывные; натурные, аналоговые, символические. Удобно представить модели в виде беспрерывного спектра (рис.1.2). Физические модели часто называют натурными, потому что извне они напоминают исследуемую систему. Они могут быть в уменьшенном масштабе (модель солнечной системы) или в увеличенном (модель атома), тогда они называются масштабирующими моделями.
Рис.1.2.
Аналоговые модели - это модели, в которых свойство реального объекта представленная другим свойством, аналогичного по поведению объекта. Аналоговая ВМ, в которой изменение напряжения может отображать изменение любой физической величины в некоторой системе, является примером подобной модели. График подает аналоговую модель другого типа. Здесь расстояние отображает характеристики объекта. График показывает соотношение между разными количественными характеристиками и может прогнозировать, как будут меняться одни величины при изменению других.
Графические решения возможные также для определения игровых задач, которые иногда используются вместе с математическими моделями, причем одна из этих моделей дает информацию для другой. Разного рода схемы также являются аналоговыми моделями (структурная схема какой-то организации).
В тех случаях, когда во взаимодействие вступают люди и машинные компоненты, моделирование называют играми (управленческими, военными и др.).
1.3.1. Статические и динамические модели
Статические модели оперируют характеристиками и объектами, не изменяющимися во времени. В динамических моделях, которые обычно более сложны, изменение параметров во времени является существенным. Статические модели обычно имеют дело с установившимися процессами, уравнениями балансового типа, с предельными стационарными характеристиками. Моделирование динамических систем состоит в имитации правил перехода системы из одного состояния в другое с течением времени. Под состоянием системы понимается набор значений се существенных параметров и переменных. Изменение состояния системы во времени в динамических системах — это изменение значений переменных системы в соответствии с законами, определяющими связи переменных и их зависимости друг от друга во времени.
1.3.2. Детерминированные и стохастические модели
При моделировании сложных реальных систем исследователь часто сталкивается с ситуациями, в которых случайные воздействия играют существенную роль. Стохастические модели, в отличие от детерминированных. Учитывают вероятностный характер параметров моделируемого объекта. Например, в модели нефтеналивного порта не могут быть определены точно моменты прихода в порт танкеров. Данные моменты являются случайными величинами, потому модель эта является стохастической: значения переменных величин модели, которые зависят от реализаций случайных величин, сами становятся случайными величинами. Анализ подобных моделей выполняется на компьютере на основе статистики, набираемой в ходе имитационных экспериментов при многократном прогоне модели для различных значений исходных случайных величин, выбранных в соответствии с их статистическими характеристиками. Привести в пример изучение систем управления с учетом шумов датчиков. Классы точности приборов. Метрология.