- •Лекция 1.
- •1.1. Основные понятия и определения.
- •1.2. Требования к модели. Функции модели
- •1.3. Классификация моделей
- •1.3.1. Статические и динамические модели
- •1.3.2. Детерминированные и стохастические модели
- •1.3.3. Классификация математических моделей.
- •Лекция 2. Разновидности математических задач, возникающих при моделировании эмс.
- •2.1. Приближение функций. Интерполяция, экстраполяция, аппроксимация. Приближение периодических функций.
- •2.2. Алгебра комплексных чисел.
- •2.3. Решение систем линейных алгебраических уравнений (слау), матричная алгебра.
- •2.4. Решение систем нелинейных алгебраических уравнений.
- •2.5. Решение систем обыкновенных дифференциальных уравнений.
- •2.6. Решение систем дифференциальных уравненийв частных производных.
- •Лекция 3. Ошибки вычислений.
- •3.1. Общие характеристики вычислительных процессов.
- •3.2. Классификация погрешностей.
- •3.3. Абсолютная и относительная погрешности. Точные десятичные знаки.
- •Лекция 4. Приближение функций
- •4.1. Каноническая форма интерполяционного полинома.
- •4.2. Интерполяционный полином Лагранжа.
- •4.3. Интерполяция сплайнами.
- •4.3.1. Линейный сплайн
- •4.3.2. Кубический сплайн
- •Лекция 5. Аппроксимация функций.
- •5.1. Степенной базис
- •5.2. Базис в виде классических ортогональных полиномов
- •5.3. Малая помехоустойчивость метода наименьших квадратов при решении задач идентификации
- •5.3.1. Теория множественности моделей
- •Лекция 6. Приближение периодических функций.
- •6.1. Общие сведения.
- •6.2. Ряды Фурье.
- •6.3. Функции Уолша.
- •Лекция 7. Решение систем линейных алгебраических уравнений.
- •7.1. Область применения слау в задачах математического моделирования эмс.
- •7.2. Прямые методы решения слау.
- •7.3. Итерационные методы.
- •Лекция 8. Решение нелинейных уравнений.
- •8.1. Отделение корней уравнения.
- •8.1.1. Графический метод отделения корней.
- •8.1.2. Аналитический метод отделения корней.
- •8.2. Метод половинного деления (метод дихотомии).
- •8.3. Метод хорд.
- •8.4. Метод касательных (метод Ньютона-Рафсона).
- •Лекция 9. Численное интегрирование и дифференцирование.
- •9.1. Метод прямоугольников.
- •9.2. Метод трапеций.
- •9.3. Метод Симпсона.
- •9.4. Численное дифференцирование.
- •Лекция 10. Решение систем обычных дифференциальных уравнений (оду).
- •10.1. Метод Эйлера.
- •10.2. Методы Рунге-Кутты.
- •10.2.1. Метод Рунге-Кутты-Мерсона
- •10.3. Метод Адамса.
- •10.4. Визуализация решений оду.
- •Лекция 11. Визуальное моделирование динамических систем.
- •Лекция 12. Численное решение систем дифференциальных уравнений в частных производных.
- •12.1. Уравнения математической физики.
- •12.1.1. Уравнения параболического типа.
- •12.1.2. Уравнения гиперболического типа.
- •12.1.3. Уравнения эллиптического типа
- •12.2. Основные понятия метода сеток.
- •Лекция 13. Решение оптимизационных задач.
- •13.1. Методы безусловной одномерной оптимизации
- •13.1.1. Постановка задачи.
- •13.1.2 Метод обратного переменного шага.
- •13.1.3. Метод половинного деления
- •13.1.4. Метод квадратичной аппроксимации (метод Пауэлла).
- •13.2 Методы оптимизации многомерных функций.
- •13.2.1. Метод покоординатного спуска.
- •13.2.2. Метод наискорейшего спуска (метод градиентов)
- •13.2.3. Метод Нелдера-Мида.
- •13.2.3. Метод пчелиного роя.
- •Лекция 14. Идентификация параметров эмс.
- •14.1. Аппроксимация переходных характеристик элементарными динамическими звеньями
- •14.1.1. Апериодическая переходная характеристика
- •14.1.2.Колебательная переходная характеристика.
Лекция 5. Аппроксимация функций.
Если набор экспериментальных данных получен со значительной погрешностью, то не имеет смысла использовать интерполяцию Лагранжа полиномами и сплайнами для обработки результатов. В этом случае необходимо провести аппроксимирующую кривую, которая не проходит через экспериментальные точки, но в то же время отражает исследуемую зависимость, сглаживает возможные выбросы за счет погрешности эксперимента.
Аппроксимирующая кривая может не проходить и через одну из экспериментальных точек, но в целом в некотором смысле наилучшим образом совпадает со всем множеством экспериментальных данных.
Обозначим узлы исходной таблицы данных через хj, где 0 <j<n - номер узла. Считаем известными значения экспериментальных данных в узловых точках f(хj) = fj .Введем непрерывную функцию φ(x) для аппроксимации дискретной зависимости f(хj). В узлах функции φ(х) и f(x)будут отличаться на величину εj = φ(хj) - f(хj). Отклонения εjмогут принимать положительные и отрицательные значения. Чтобы не учитывать знаки, возведем каждое отклонение в квадрат и просуммируем квадраты отклонений пo всем узлам
(5.1)
Метод построения аппроксимирующей функции φ(х) из условия минимума величины Q называется методом наименьших квадратов (МНК).
Наиболее распространен способ выбора функции φ(х) в виде линейной комбинации.
(5.2)
φ0(х), φ1(х),..., φn(х) - базисные функции; m<n; с0, с1,...,сn - коэффициенты, определяемые при минимизации величины Q.
Математически условия минимума суммы квадратов отклонений Q запишем, приравнивая нулю частные производные от Q по коэффициентам ck, 0 <k<m:
(5.3)
Из системы линейных алгебраических уравнений (4.3) определяются все коэффициенты сk. Система (5.3) называется системой нормальных уравнений. Матрица этой системы имеет следующий вид:
и называется матрицей Грама. Элементы матрицы Грама являются скалярными произведениями базисных функций
Расширенная матрица системы уравнений (5.3) получится добавлением справа к матрице Грама столбца свободных членов
Отметим основные свойства матрицы Грама, полезные при программировании:
1) матрица симметрична, т.е. aij = aji, что позволяет сократить объем вычислений при заполнении матрицы;
2) матрица является положительно определенной, следовательно, при решении системы нормальных уравнений методом исключения Гаусса можно отказаться от процедуры выбора главного элемента;
3) определитель матрицы будет отличен от нуля, если в качестве базиса выбраны линейно независимые функции φk(х), при этом система (5.3) имеет единственное решение.
При
обработке экспериментальных данных,
определенных с погрешностью е в каждой
узловой точке, обычно начинают с
аппроксимации функцией φ(х),
представимой одной-двумя базисными
функциями. После определения коэффициентов
сk
вычисляют величину Q по формуле (5.1). Если
получится, что
,
то необходимо расширить базис добавлением
новыхфункций φk(х).
Расширение базиса необходимо осуществлять
до тех пор, пока не выполнится условие
.
Выбор конкретных базисных функций зависит от свойств аппроксимируемой функции f(x), таких, как периодичность, экспоненциальный или логарифмический характер, свойства симметрии, наличие асимптотики и т.д.
