- •Раздел 1. Классификация твердых тел. Электронная теория Друде-Лоренца.
- •Раздел 2. Электронные состояния и движение электронов в идеальном кристалле.
- •Раздел 3. Электронные состояния в реальном кристалле
- •Раздел 4. Статистика равновесных носителей заряда
- •Раздел 5. Неравновесные электронные процессы в полупроводниках
- •Раздел 6. Диффузия и дрейф неравновесных носителей заряда
- •Раздел 7. Контактные явления
- •Раздел 1. Классификация твердых тел. Электронная теория Друде-Лоренца.
- •Классификация по свойствам.
- •Полупроводники и диэлектрики.
- •Классификация неметаллических кристаллов по химической связи.
- •Классификация по зонной структуре (энергетическому спектру) и симметрии кристаллических решеток.
- •1.2. Электронная теория Друде-Лоренца. Основы классической теории электропроводности. Теория Друде – Лоренца.
- •Раздел 2. Электронные состояния и движение электронов в идеальном кристалле.
- •2.1 Одноэлектронное уравнение Шредингера для кристалла. Одноэлектронная волновая функция Блоха.
- •Зонные модели металлов, диэлектриков, полупроводников.
- •2.2 Методы расчета электронных энергетических состояний в твердых телах. Приближения свободных и сильносвязанных электронов. Энергетическая диаграмма металлов.
- •Энергетическая диаграмма диэлектриков и п/п.
- •Электропроводность в твердых телах. Носители заряда. Подвижность.
- •Дрейфовая подвижность μd.
- •Удельная электропроводность твердого тела. (σ) Биполярная проводимость.
- •Электропроводность чистых (собственных) и легированных (примесных) полупроводников.
- •Уравнение Шредингера для электронной подсистемы кристалла.
- •Одноэлектронное приближение. Метод самосогласованного поля.
- •Одноэлектронная волновая функция ψ(r)
- •Условие трансляции.
- •Приближение сильносвязанных электронов (псэ)
- •Блоховская волновая функция в псэ.
- •Решение уравнения Шредингера в псэ.
- •Закон дисперсии e(k) в методах псэ.
- •Интеграл перекрытия волновой функции.
- •Применение метода псэ для расчёта e(k) для конкретных решеток.
- •Плотность состояний в разрешенной зоне кристалла конечных размеров. Дискретность волнового вектора электрона в кристалле.
- •Квазиимпульс ( ) электрона в периодическом поле кристалла
- •2.3 Зонная структура твердых тел. Зоны Бриллюэна для кубических и генксагональных кристаллов. Зоны Бриллюэна
- •2.4 Эффективная масса электрона в кристалле, её связь со структурой энергетических зон. Понятие дырки. Динамика электрона в периодическом поле изитропных и анизотропных кристаллов.
- •Анизотропный и изотропный квадратичные законы дисперсии
- •Поверхности равной энергии
- •Ускорение электрона в кристалле
- •Физический смысл понятия эффективной массы
- •2.5 Зонная структура типичных металлов, полупроводников, полуметаллов, бесщелевых полупроводников и диэлектриков.
- •Вырождение валентной зоны
- •Сечение изоэнергитических поверхностей при вырождении зон
- •Кристаллы с центром инверсии
- •Кристаллы без центра инверсии
- •Зонная структура элементарных полупроводников ( )
- •Зонная структура п/п соединений: арсенида и фосфида галлия Арсенид галлия
- •Фосфид галлия
- •2.6 Размерное квантование энергии электронов и дырок в полупроводниках. Квантоворазмерные структуры с низкоразмерным электронным газом.
- •Общая схема зоны для гексагональных кристаллов
- •Раздел 3. Электронные состояния в реальном кристалле
- •3.1 Уравнение Шредингера реального кристалла. Метод эффективной массы. Локализованные состояния. Водородоподобные примеси и экситоны.
- •3.2 Глубокие примесные центры. Изоэлектронные примеси. Электрически неактивные примеси. Амфотерные примеси.
- •3.3 Примесные состояния в низкоразмерных структурах.. Поверхностные электронные состояния.
- •Метод эффективной массы
- •3.2 Глубокие примесные центры. Изоэлектронные примеси. Электрически неактивные примеси. Амфотерные примеси. Примесные состояния в твердых телах
- •Примесные зоны. Проводимость по примесным зонам
- •3.3 Примесные состояния в низкоразмерных структурах.. Поверхностные электронные состояния. Донорно-акцепторные пары
- •Глубокие примесные центры (гц)
- •Тройной акцептор в Ge
- •Изоэлектронные примеси
- •Азот в фосфите галлия
- •Электрически нейтральные примеси
- •Раздел 4. Статистика равновесных носителей заряда
- •Плотность состояний n(e)
- •Плотность состояний в зоне проводимости
- •Плотность состояний в зоне проводимости многодолинного (непрямозонного) полупроводника
- •Смысл введения mnd
- •4.2 Концентрация электронов и дырок в зонах для различных степеней вырождения электронного или дырочного газа. Эффективная масса дырок для плотности состояний - mpd
- •Концентрация электронов и дырок в условиях равновесия в темноте
- •Концентрация электронов проводимости в невырожденных полупроводниках
- •Концентрация дырок в полупроводнике p-типа
- •Смысл Nc и Nv в статистике
- •Уравнение электрической нейтральности для полупроводников и диэлектриков
- •Собственный полупроводник
- •Определение Fi
- •Собственная концентрация ni
- •Произведение np в невырожденном полупроводнике
- •Электронные процессы
- •Функции распределения электронов и дырок по примесным состояниям ft
- •Функция распределения дырок по уровням акцепторов
- •4.4 Плотность квантовых состояний в квантово-размерных структурах с квантовыми ямами, квантовыми нитями и квантовыми точками. Концентрация нейтральных и ионизированных доноров и акцепторов
- •Уровень Ферми и концентрация электронов в невырожденных некомпенсированных полупроводниках n-типа
- •Концентрация нейтральных и ионизированных доноров и акцепторов
- •Компенсационный полупроводник n-типа
- •Уровень Ферми
- •Температурная зависимость n(t) и f(t)
- •Вырожденные полупроводники
- •Раздел 5. Неравновесные электронные процессы в полупроводниках
- •Неравновесная статистика.Электронные и дырочные квазиуровни Ферми.
- •Время жизни неосновных носителей
- •Сильный уровень инжекции
- •Раздел 6. Диффузия и дрейф неравновесных носителей заряда
- •Уравнение непрерывности
- •Диффузионные токи в полупроводниках и диэлектриках
- •Распределение избыточной концентрации неосновных носителей во времени. Время жизни неосновных носителей
- •Импульсное освещение
- •Распределение избыточной концентрации неосновных носителей заряда в пространстве
- •Диэлектрическое время релаксации-τn
- •Дрейфовая длина неосновных носителей
- •Дрейфовая длина неравновесных дырок (lp) в полупроводнике n-типа
- •Распределение избыточной концентрации при поверхностной рекомбинации
- •Коэффициент инжекции
- •Раздел 7. Контактные явления
- •Основные понятия физики контактов
- •Токи термоэлектронной эмиссии
- •Контакт полупроводника с металлом
- •Вах выпрямляющего контакта м/п (n-типа)
- •Зонная модель контакта при прямом смещении
- •Зонная модель контакта при обратном смещении
- •Вах выпрямляющего контакта
- •Зонная модель p-n перехода в равновесие
- •Ёмкость p-n – перехода
- •Перенос заряда в p-n –переходе
- •Омический контакт
- •Гетеропереходы (гп)
- •Поверхностные электронные состояния, их влияние на контактные явления.
- •Поверхностный потенциал φS
Сечение изоэнергитических поверхностей при вырождении зон
Т.о. валентная зона сложная, состоит из двух параболических подзон, стыкующихся в точке .
Спин: орбитальное расщепление вырожденно валентной зоны.
Если в уравнение Шредингера ввести потенциальную энергию, взаимодействия силового магнитного момента с магнитным полем, создаваемым орбитальным движением электронов, то это приводит к смещению уровней энергии и к частичному или полному вырождению уровней в зависимости от симметрии кристалла.
Кристаллы с центром инверсии
Спиновое вырождение остается.
Кристаллы без центра инверсии
Вырождение снимается
полностью, включая спиновое.
смещается
из точки
в точку
.
С учетом вырождения и спин- орбитального расщепления валентной зоны состоящей из трех подзон.
- подзоны тяжелых и легких дырок
-
отщепленный подзона, параболическая с
эффективной массой
Закон дисперсии для валентной зоны: ( )
+
- подзона проявляется в оптическом поглощении
- в электропроводности и поглощении света
Зонная структура элементарных полупроводников ( )
-непрямодонные
п/п, зона проводимости и валентная зона-
сложные- состоят из наложения трех
полос, каждая образована из гибридизированных
-
состояний валентных электронов.
Германий Структура зон
Зона проводимости:
имеет минимумы энергии- долины
,
абсолютный минимум-
,
эффективная масса электронов- тензор
(
).
Закон дисперсии- квадратичный анизотропный.
Поверхности равной энергии- эллипсоиды вращения с осью вращения вдоль диагоналей куста.
На приходится четыре полных эллипсоида, образующих суммарную поверхность равной энергии, вместо 8 по симметрии -долины [111] из-за положения -долины на границе .
Валентная зона: состоит из трех подзон:
-тяжелых
дырок,
-легких
дырок
-отщепленной подзоны
и -вырождена в точке (стыкуются) поэтому поверхности равной энергии гафрированные.
Законы дисперсии:
;
где
-
тяжелые дырки;
-легкие
дырки
Подзона , отщепленная подзона в результате учета спин-орбитального взаимодействия.
,
где:
Кремний Структура зон
Зона проводимости:
долины
абсолютный минимум энергии X([100])
лежит внутри
(
).
Эффективная масса
-
тензор (
)
Закон дисперсии- квадратичный анизотропный, поверхности равной энергии- сфероиды (менее вытянуты чем в Ge).
-
коэффициент анизотропии зоны проводимости
меньше, чем у германия.
Оси вращения сфероидов направлены вдоль главных осей куба.
Валентная зона
аналогична Ge, но
в
больше.
Зонная структура п/п соединений: арсенида и фосфида галлия Арсенид галлия
Зона проводимости:
абсолютный минимум энергии лежит в
центре зоны Бриллюэна (
-долины),
поэтому
=
Эффективная масса электронов -скаляр
Закон дисперсии:
Поверхности равной энергии- сферы, вблизи
Минимум энергии-
L лежит на границе
(
)
с этой долиной связано явление
отрицательной дифференциальной
проводимости (ОДП).
ОДП возникает в
сильных электрических полях в результате
междолинного переброса электрона из
центральной
-долины,
где эффективная масса электронов
(
-тяжелые
электроны L-долины), это
приводит к снижению подвижности
электронов
и падению проводимости с ростом
электрического поля (
ОДП)
В состоянии ОДП Ga As может работать как усилитель и генератор СВЧ- колебаний (эффект Ганна)
три подзоны, величину превосходит в Si.
Описание валентной зоны аналогично валентной зоне в элементарном п/п.
