
- •Предмет теории вероятностей
- •2. Понятие события. Виды событий.
- •Виды случайных событий
- •3. Классическое и статистическое определение вероятности. Основные формулы комбинаторики
- •3.1 Классическое определение вероятности.Свойства вероятности.
- •3.2 Относительная частота. Устойчивость относительной частоты
- •3.3 Ограниченность классического определения вероятности. Статистическая вероятность.
- •3.4 Основные формулы комбинаторики
- •Решение. Искомое число способов
- •1. Понятие суммы и произведения событий.
- •2. Теоремы сложения вероятностей несовместных событий и событий, образующих полную группу событий
- •Теорема сложения вероятностей несовместных событий
- •2.2. Полная группа событий
- •Теорема сложения вероятностей противоположных событий. Принцип практической невозможности маловероятных событий.
- •3.1 Противоположные события
- •3.2. Принцип практической невозможности маловероятных событий
- •2. Теоремы умножения для зависимых и независимых событий.
- •Теорема о вероятности появления хотя бы одного независимого
- •Теорема сложения вероятностей совместных событий
- •2. Формула полной вероятности
- •Деталь может быть извлечена , либо из первого набора (событие в1), либо из второго (событие в2).
- •3. Вероятность гипотез. Формулы Бейеса
- •1) Деталь проверил первый контролер (гипотеза в1);
- •2) Деталь проверил второй контролер (гипотеза b2).
- •1. Формула Бернулли
- •2. Локальная теорема Лапласа
- •3. Интегральная теорема Лапласа
- •Случайная величина
- •Дискретные и непрерывные случайные величины
- •2. Закон распределения вероятностей дискретной случайной величины .
- •3. Биномиальный закон распределения .
- •4 . Распределение Пуассона
- •5 . Геометрическое распределение .
- •Понятие и вероятностный смысл математического ожидания дискретной случайной величины
- •Вероятностный смысл математического ожидания Пусть произведено «n» испытаний, в которых слу-
- •2. Свойства математического ожидания
- •Математическое ожидание случайной величины сх:
- •3. Теорема о математическом ожидании биномиального закона распределения
- •Дисперсия дискретной случайной величины и формула для ее вычисления.
- •1.1 Целесообразность введения числовой характеристики рассеяния случайной величины
- •1.2 Отклонение случайной величины от ее математического ожидания
- •1.3 Дисперсия дискретной случайной величины
- •1.4. Формула для вычисления дисперсии
- •2. Свойства дисперсии и их следствия.
- •Доказательство. По формуле для вычисления дисперсии имеем
- •Дисперсия числа появлений события в независимых испытаниях (дисперсия биномиального закона распределения)
- •3. Среднеквадратическое отклонение одной и суммы независимых случайных величин.
- •Среднее квадратическое отклонение суммы взаимно независимых случайных величин
- •4. Сущность и значение для практики теоремы Чебышева.
- •2. Свойства функции распределения
- •3. График функции распределения
- •1. Определение и свойства плотности распределения.
- •Свойства плотности распределения
- •2. Взаимосвязь функции и плотности распределения вероятностей.
- •Вероятностный смысл плотности распределения.
- •Вероятность попадания непрерывной случайной величины в заданный интервал
2. Понятие события. Виды событий.
Каждая наука, развивающая общую теорию какого-либо круга явлений, содержит ряд основных понятий, на которых она базируется. Таковы, например, в геометрии понятия точки, прямой, линии; в механике — понятия силы, массы, скорости, ускорения и т. д. Естественно, что не все основные понятия могут быть строго определены, так как определить понятие — это значит свести его к другим, более известным. Очевидно, процесс определения одних понятий через другие должен где-то заканчиваться, дойдя до самых первичных понятий, к которым сводятся все остальные и которые сами строго не определяются, а только поясняются.
Такие основные понятия существуют и в теории вероятностей. В качестве первого из них введем понятие события.
Под «событием» в теории вероятностей понимается всякий факт, который в результате опыта может произойти или не произойти. Приведем несколько примеров событий:
А
—поступившая
в продажу буханка хлеба имеет массу
равно (0.5
)
кг;
В —Изготовленные на предприятии ВТЗ 3 поршня ДВС имеют одинаковый диаметр с погрешностью 1 мкм;
С—Вся партия изготовленных стеклянных бутылок на предприятии RUSCAM (г. Гороховец) за одну смену удовлетворяет все 99 показателям качества;
D—появление
резистора номиналом (200
0.1)
Ом из партии в 1000 штук нам участке сборки
радиоэлектронной аппаратуры на заводе
«Электроприбор»;
Е—возникновение пожара на самолете при его полёте по маршруту;
F—разрушение здания при землетрясении силой 5 баллов;
G – увеличение оборачиваемости расходов на предприятии «Завод Автоприбор»;
H – сокращение дебиторской и кредиторской задолжностей на предприятии «Владимирский тракторный завод».
Рассматривая вышеперечисленные события, мы видим, что каждое из них обладает какой-то степенью возможности: одни — большей, другие — меньшей, причем для некоторых из этих событий мы сразу же можем решить, какое из них более, а какое менее возможно. Например, сразу видно, что событие А более вероятно, чем В или D. Относительно событий С, Е, F, G, H аналогичных выводов сразу сделать нельзя - для этого следует несколько уточнить условия опыта. Так или иначе ясно, что каждое из таких событий обладает той или иной степенью возможности.
Виды случайных событий
События называют несовместными, если появление одного из них исключает появление других событий в одном и том же испытании.
Пример 1. Из ящика с деталями наудачу извлечена деталь. Появление стандартной детали исключает появление нестандартной детали. События «появилась стандартная деталь» и «появилась нестандартная деталь»—несовместные.
Пример 2. Брошена монета. Появление «герба» исключает появление надписи. События «появился герб» и «появилась надпись» — несовместные.
Несколько событий образуют полную группу, если в результате испытания появится, хотя бы одно из них. Другими словами, появление хотя бы одного из событий полной группы есть достоверное событие. В частности, если события, образующие полную группу, попарно несовместны, то в результате испытания появится одно и только одно из этих событий. Этот частный случай представляет для нас наибольший интерес, поскольку используется далее.
Пример 3. Приобретены два билета денежно-вещевой лотереи. Обязательно произойдет одно и только одно из следующих событий:
«выигрыш выпал на первый .билет и не выпал на второй», «выигрыш не выпал на первый билет и выпал на второй», «выигрыш выпал на оба билета», «на оба билета выигрыш не выпал». Эти события образуют полную группу попарно несовместных событий.
Пример 4. Стрелок произвел выстрел по цели. Обязательно произойдет одно из следующих двух событий: попадание, промах. Эти два несовместных события образуют полную группу.
События называют равновозможными, если есть основания считать, что ни одно из них не является более возможным, чем другое.
Пример 5. Появление «герба» и появление надписи при бросании монеты—равновозможные события. Действительно, предполагается, что монета изготовлена из однородного материала, имеет правильную цилиндрическую форму и наличие чеканки не оказывает влияния на выпадение той или иной стороны монеты.
Пример 6. Появление того или иного числа очков на брошенной игральной кости—равновозможные события. Действительно, предполагается, что игральная кость изготовлена из однородного материала, имеет форму правильного многогранника и наличие очков не оказывает влияния на выпадение любой грани.