
- •Предмет теории вероятностей
- •2. Понятие события. Виды событий.
- •Виды случайных событий
- •3. Классическое и статистическое определение вероятности. Основные формулы комбинаторики
- •3.1 Классическое определение вероятности.Свойства вероятности.
- •3.2 Относительная частота. Устойчивость относительной частоты
- •3.3 Ограниченность классического определения вероятности. Статистическая вероятность.
- •3.4 Основные формулы комбинаторики
- •Решение. Искомое число способов
- •1. Понятие суммы и произведения событий.
- •2. Теоремы сложения вероятностей несовместных событий и событий, образующих полную группу событий
- •Теорема сложения вероятностей несовместных событий
- •2.2. Полная группа событий
- •Теорема сложения вероятностей противоположных событий. Принцип практической невозможности маловероятных событий.
- •3.1 Противоположные события
- •3.2. Принцип практической невозможности маловероятных событий
- •2. Теоремы умножения для зависимых и независимых событий.
- •Теорема о вероятности появления хотя бы одного независимого
- •Теорема сложения вероятностей совместных событий
- •2. Формула полной вероятности
- •Деталь может быть извлечена , либо из первого набора (событие в1), либо из второго (событие в2).
- •3. Вероятность гипотез. Формулы Бейеса
- •1) Деталь проверил первый контролер (гипотеза в1);
- •2) Деталь проверил второй контролер (гипотеза b2).
- •1. Формула Бернулли
- •2. Локальная теорема Лапласа
- •3. Интегральная теорема Лапласа
- •Случайная величина
- •Дискретные и непрерывные случайные величины
- •2. Закон распределения вероятностей дискретной случайной величины .
- •3. Биномиальный закон распределения .
- •4 . Распределение Пуассона
- •5 . Геометрическое распределение .
- •Понятие и вероятностный смысл математического ожидания дискретной случайной величины
- •Вероятностный смысл математического ожидания Пусть произведено «n» испытаний, в которых слу-
- •2. Свойства математического ожидания
- •Математическое ожидание случайной величины сх:
- •3. Теорема о математическом ожидании биномиального закона распределения
- •Дисперсия дискретной случайной величины и формула для ее вычисления.
- •1.1 Целесообразность введения числовой характеристики рассеяния случайной величины
- •1.2 Отклонение случайной величины от ее математического ожидания
- •1.3 Дисперсия дискретной случайной величины
- •1.4. Формула для вычисления дисперсии
- •2. Свойства дисперсии и их следствия.
- •Доказательство. По формуле для вычисления дисперсии имеем
- •Дисперсия числа появлений события в независимых испытаниях (дисперсия биномиального закона распределения)
- •3. Среднеквадратическое отклонение одной и суммы независимых случайных величин.
- •Среднее квадратическое отклонение суммы взаимно независимых случайных величин
- •4. Сущность и значение для практики теоремы Чебышева.
- •2. Свойства функции распределения
- •3. График функции распределения
- •1. Определение и свойства плотности распределения.
- •Свойства плотности распределения
- •2. Взаимосвязь функции и плотности распределения вероятностей.
- •Вероятностный смысл плотности распределения.
- •Вероятность попадания непрерывной случайной величины в заданный интервал
1.2 Отклонение случайной величины от ее математического ожидания
Пусть Х—случайная величина и М (X)—ее математическое ожидание. Рассмотрим в качестве новой случайной величины разность Х—М(Х).
Отклонением называют разность между случайной величиной и ее математическим ожиданиям.
Пусть закон распределения Х известен:
Напишем закон распределения отклонения.
Для того
точно, чтобы случайная величина приняла значение х1. Вероятность же этого события равна р1, следовательно, и вероятность того. что отклонение примет значение
и для остальных возможных значений отклонения.
Таким образом, отклонение имеет следующий закон распределения:
Приведем важное свойство отклонения, которое используется далее.
Теорема.
Математическое ожидание отклонения равно нулю:
Доказательство.
Пользуясь свойствами математического ожидания (математическое ожидание разности равно разности математических ожиданий, математическое ожидание постоянной равно самой постоянной) и приняв во внимание, что М (X) — постоянная величина, имеем
Пример. Задан закон распределения дискретной случайной величины X:
Убедиться, что математическое ожидание отклонения равно нулю.
Решение. Найдем математическое ожидание X:
Найдем возможные значения отклонения, для чего из возможных значений Х вычтем математическое ожидание М(Х}:1—1,8=0,8;
2—1,8=0,2.
Напишем закон распределения отклонения:
Найдем математическое ожидание отклонения:
Итак, математическое ожидание отклонения равно нулю, как и должно быть.
Замечание.
Наряду с термином «отклонение» используют термин «центрированная величина».
Центрированной случайной вели-
Название «центрированная величина» связано с тем, что математическое ожидание есть центр распределения
1.3 Дисперсия дискретной случайной величины
На практике часто требуется оценить рассеяние возможных значений случайной величины вокруг ее среднего значения. Например, в артиллерии важно знать, насколько кучно лягут снаряды вблизи цели, которая должна быть поражена.
На первый взгляд может показаться, что для оценки рассеяния проще всего вычислить все возможные значения отклонения случайной величины и затем найти их среднее значение.
Однако такой путь ничего не даст, так как среднее значение отклонения, т. е. М [X—М (X)], для любой случайной величины равно нулю. Это свойство уже было доказано в предыдущем параграфе и объясняется тем, что одни возможные отклонения положительны, а другие—отрицательны; в результате их взаимного погашения среднее значение отклонения равно нулю.
Эти соображения говорят о целесообразности заменить возможные отклонения их абсолютными значениями или их квадратами. Так и поступают на деле. Правда, в случае, когда возможные отклонения заменяют их абсолютными значениями, приходится оперировать с абсолютными величинами, что приводит иногда к серьезным затруднениям. Поэтому чаще всего идут по другому пути, т. е. вычисляют среднее значение квадрата отклонения, которое и называют дисперсией.
Дисперсией (рассеянием) дискретной случайной величины называют математическое ожидание квадрата отклонения случайной величины от ее математического ожидания:
Пусть случайная величина задана законом распределения
Тогда квадрат отклонения имеет следующий закон распределения:
По определению дисперсии,
Таким образом, для того чтобы найти дисперсию, достаточно вычислить сумму произведений возможных значений квадрата отклонения на их вероятности.
Замечание. Из определения следует, что дисперсия дискретной случайной величины есть неслучайная (постоянная) величина. В дальнейшем читатель узнает, что дисперсия непрерывной случайной величины также есть постоянная величина.
Пример. Найти дисперсию случайной величины X, которая задана следующим законом распределения:
Решение. Найдем математическое ожидание:
Найдем все возможные значения квадрата отклонения:
Напишем закон распределения квадрата отклонения:
По определению,
Вычисление, основанное на определении дисперсии, оказалось относительно громоздким. Далее будет указана формула, которая приводит к цели значительно быстрее.