
- •Б иполярные транзисторы. Основные характеристики: входные, выходные, проходные. Электрические и экспоненциальные параметры.
- •Каскад с оэ: схема включения, значения параметров Rвх, Rвых, Ku, Ki, φ. Достоинства и применение.
- •1.Схема включения транзистора с общим эмиттером.
- •2. Значения параметров Rвх, Rвых, Ku, Ki, φ:
- •3. Достоинства и применение:
- •Каскад с ок: схема включения, значения параметров Rвх, Rвых, Ku, Ki, φ. Достоинства и применение.
- •Каскад с об: схема включения, значения параметров Rвх, Rвых, Ku, Ki, φ. Достоинства, нед остатки и применение.
- •Статические характеристики биполярных транзисторов, h- параметры, схемы замещения транзисторов.
- •Транзисторный источник тока. Транзисторный источник тока с заземленной нагрузкой. Н едостатки.
- •Модель Эмберса-Молла.
- •Схемы задания общей точки. Недостатки. Применение.
- •Токовые зеркала (эффект Эрли). Недостатки. Применение.
- •Отражатели тока.
- •12. Режимы работы транзисторов: активный (усилительный), инверсный, насыщения.
- •Классы усиления: a, b, ab, c, d. Достоинства и недостатки. Применение.
- •Усилители мощности. Однотактные и двухтактные усилители. Схемы включения.
- •Составные транзисторы: схемы Дарлингтона и Шиклаи. Применение.
- •Реальная схема выходного каскада усилителя мощности. Принцип работы.
- •Следящая связь (пос). Схема. Применение.
- •Эффект Миллера.
- •Полевые транзисторы (мдп (моп) – транзисторы). По способу создания канала (с p-n переходом, встроенным и индуцированным каналом). Входные и выходные характеристики.
- •2.1. Транзистор со встроенным каналом.
- •2 .2. Транзисторы с индуцированным каналом.
- •Достоинства полевого транзистора по сравнению с биполярным транзистором. Недостатки. Достоинства полевого транзистора с p-n переходом. Недостатки.
- •Схемы включения полевых транзисторов: общий исток, общий сток, общий затвор.
- •Бтиз (igbt) – биполярный транзистор с изолированным затвором. Достоинства по сравнению с моп.
- •Обратные связи (ос): отрицательная обратная связь (оос), положительная обратная связь (пос). Применение. Коэффициент ос. Ос по способам подачи сигнала и по способу снятия сигнала.
- •Ос последовательная по напряжению и по току. Схемы. Основные параметры.
- •Ос параллельная по напряжению и по току. Схемы. Основные параметры.
- •Усилители постоянного тока (упт). Параметры. Применение. Упт с непосредственной связью между каскадами. Схема. Достоинства и недостатки. Применение.
- •Метод мдм (модуляция-демодуляция). Достоинства и недостатки.
- •Дифференциальные усилители (ду). Схема включения. Ду в режиме покоя, в режиме усиления противофазного сигнала, в режиме усиления синфазного сигнала. Способ улучшения свойств усилителя (схема).
- •С пособы компенсации начального напряжения смещения. Схема.
- •Ду с динамической нагрузкой. Схема.
- •Операционные усилители (оу). Графическое изображение. Упрощенная схема оу.
- •Классификация оу по типам входных каскадов: бпт, пт, супер β-бпт, с гальванической изоляцией входа от выхода, варикап.
- •Динамическое питание оу. Недостаток.
- •Параметры оу (входные, выходные и динамические). Характеристики. (Схема в вопр 32)
- •Инвертирующие усилители (схемы). Параметры. Достоинства и недостатки.
- •2. Параметры:
- •3. Достоинства и недостатки:
- •Преобразователь тока в напряжение. Неинвертирующий усилитель (схема). Достоинства и недостатки.
- •Сумматоры и вычетатели. Неинвертирующий сумматор (схема). Недостаток. Инвертирующий сумматор (схема). Достоинства и недостатки. Применение. Вычетатель.
- •Интегратор и дифференциатор. Схемы. Применение.
- •Компараторы (устройства сравнения). Схемы. Недостатки.
- •Триггер Шмидта (компаратор с гистерезисом). Схемы. Недостаток.
- •Генераторы синусоидальных колебаний. Условия для работы схемы в режиме генерации.
- •Генераторы гармонических сигналов. Схема. Достоинства и недостатки.
- •Кварцевый генератор. Схема. Достоинства и недостатки.
- •М ультивибраторы (генераторы прямоугольных колебаний). Схема.
- •Источники электропитания. Классификация.
- •Компенсационные. Параметрические. Достоинства и недостатки.
- •Н а транзисторах.
- •Повышающий стабилизатор. Схема. Принцип работы.
- •Функциональная схема ключевого источника питания (принципиальная схема). Принцип р аботы.
- •Последовательный компенсационный стабилизатор напряжения на транзисторе. Схема и п ринцип работы.
- •Интегральный стабилизатор напряжений. Схема. Принцип работы.
- •Тепловое сопротивление.
- •Параллельное и последовательное включения транзисторов. Схемы и их назначение.
- •Источники опорного напряжения. Задание рабочего тока стабилитрона, источника тока на оу. Стабилитронные интегральные микросхемы.
- •Трехвыводные и четырехвыводные стабилизаторы. Простейший способ увеличения тока. Схемы. Недостатки.
- •Стабилизатор тока. Зарядное устройство (простое) с ограничением тока заряда. Сдвоенные стабилизаторы, их достоинства. Схемы.
- •Стабилизаторы-ограничители переменного напряжения.
- •Регулятор-стабилизатор напряжений на тиристоре.
- •Последовательные устройства. Триггеры: по количеству входов, по способу ввода информации. Способы управления: со статическим и динамическим управлением.
- •Последовательные устройства. Регистры.
- •Счетчик Джонсона. Схема и принцип работы.
- •Счетчики и делители. Достоинства и недостатки. Классификация счетчиков: по коэффициенту или модулю счета, по направлению счета, по способу организации внутренних связей.
- •Синхронные счетчики. Счетчики кмоп. Способы измерения коэффициента пересчета.
- •Комбинационная логика. Мультиплексоры. Демультиплексоры и дешифраторы. Шифраторы. Компараторы. Схемы контроля четности. Сумматоры. Цап и ацп.
Составные транзисторы: схемы Дарлингтона и Шиклаи. Применение.
С
хема
Дарлингтона:
два,
иногда три транзистора, соединенных
для увеличения коэффициента передачи
тока.
Ток через вторую базу идёт через эмиттер
Т
ранзистор
Шиклаи:
Используя
комбинацию транзистора Дарлингтона и
Шиклаи в выходном каскаде, мы получаем
возможность устанавливать на выходе
транзисторы одной структуры n-p-n,
кот. легко при необходимости подобрать
с близкими параметрами и уменьшить тем
самым уровень нелинейных искажений
выходного сигнала.
Rб предназначен для отвода тока утечки предвыходного транзистора из базы выходного .
Реальная схема выходного каскада усилителя мощности. Принцип работы.
К
аскад
с ОЭ на VT2 обеспечивает усиление входного
сигнала по напряжению с целью увеличения
его Ku.
В его коллекторную цепь включен источник
тока на VT1.
Каскад на VT3 осуществляет установку и стабилизацию рабочего тока входного каскада. Он откр/закр. таким образом, чтобы Uбэ3=0.6B. т.е. Uб6, Uб7 = 0.6В при нижнем положении подвижного контакта R3.
C1 исключает каскад на VT3 из коллекторной нагрузки VD2.
VT4, VT5 осуществляют защиту от перегрузок по току и КЗ нагрузки выходного каскада. UR6, UR7 <0.6B VT4, VT5 заперты и не влияют на работу схемы. Когда напряжение будет выше 0.6, тогда VT4,VT5 приоткрываются и «отбирают» часть базового тока VT6,VT7 ограничивая т.0 max значения тока VT8,VT9 на заданном уровне.
Следящая связь (пос). Схема. Применение.
На обоих выводах R2 присутствуют пере-менное напряжение одинаковой фазы и величины т.е. пере-менный ток через R2 почти не протекает, что эквивалентно многок-ратному увеличению его сопротивления пере-менному току. Это позволяет увеличить Кu каскада и широко использовать до внед-рения в схемотехнику источ-ников тока.
Использование следящей связи поз-воляет исключить Rд из цепи и принять Rвх = 10Rг
При получении сигнала от источников с большим Rвых сопротив-лением наблюдается существенный завал высоких частот из-за действия емкостного сопротивления кабеля и монтажа. Подавая сигнал из m. А на первый экран мы получаем на 2-х обкладках емкости кабеля практически одинаковое переменное напряжение, что искл. ее заряд и эквивалентно уменьшению емкости в (10-100) и даже 1000 раз. Второй экран при этом штатно подключён к корпусу.
Эффект Миллера.
æ
Rи
æ-коэффициент обратной связи
За счет присутствия Скб (барьерная ёмкость в усилительном каскаде с ОЭ) существует паразитная ООС. Сигнал на коллекторе инверсен по отношению к входному и через Скб попадая на базу вычитается из входного сигнала.
Uвх э=Uвх-∆Uвх = Uвх-Uвых æ
Допустим: Uвх=0.1 1) Кu=1 Uвх экв=99mВ
2) Ku=10 Uвх экв=90mB
3) Ku=50 Uвх экв=50mB
Эффект Миллера заключается в в увеличении действующего значения Скб в Кu раз. Этот эффект существенно ограничивает усиление каскада с ОЭ на высоких частота, где величина ХСкб сравнимы с входным сопротивлением каскада и æ имеет значительную величину.
С электронного конспекта:
У
силитель
обладает некоторым коэффициентом
усиления по напряжению Кu,
следовательно, небольшой сигнал
напряжения на входе порождает на
коллекторе сигнал, в Кu
раз превышающий входной (и инвертированный
по отношению к входному). Волна проходит
через конденсатор, попадает на базу и
уменьшает входной сигнал. Из этого
следует, что для источника сигнала
емкость Скб в (Кu
+1) раз больше, чем при подключении Скб
между базой и землей. Эффект Миллера
часто играет основную роль в спаде
усиления, так как типичное значение
емкости обратной связи около 4 пкФ
соответствует (эквивалентно) емкости
в несколько сотен пикофарад, присоединенной
на землю.