
- •Б иполярные транзисторы. Основные характеристики: входные, выходные, проходные. Электрические и экспоненциальные параметры.
- •Каскад с оэ: схема включения, значения параметров Rвх, Rвых, Ku, Ki, φ. Достоинства и применение.
- •1.Схема включения транзистора с общим эмиттером.
- •2. Значения параметров Rвх, Rвых, Ku, Ki, φ:
- •3. Достоинства и применение:
- •Каскад с ок: схема включения, значения параметров Rвх, Rвых, Ku, Ki, φ. Достоинства и применение.
- •Каскад с об: схема включения, значения параметров Rвх, Rвых, Ku, Ki, φ. Достоинства, нед остатки и применение.
- •Статические характеристики биполярных транзисторов, h- параметры, схемы замещения транзисторов.
- •Транзисторный источник тока. Транзисторный источник тока с заземленной нагрузкой. Н едостатки.
- •Модель Эмберса-Молла.
- •Схемы задания общей точки. Недостатки. Применение.
- •Токовые зеркала (эффект Эрли). Недостатки. Применение.
- •Отражатели тока.
- •12. Режимы работы транзисторов: активный (усилительный), инверсный, насыщения.
- •Классы усиления: a, b, ab, c, d. Достоинства и недостатки. Применение.
- •Усилители мощности. Однотактные и двухтактные усилители. Схемы включения.
- •Составные транзисторы: схемы Дарлингтона и Шиклаи. Применение.
- •Реальная схема выходного каскада усилителя мощности. Принцип работы.
- •Следящая связь (пос). Схема. Применение.
- •Эффект Миллера.
- •Полевые транзисторы (мдп (моп) – транзисторы). По способу создания канала (с p-n переходом, встроенным и индуцированным каналом). Входные и выходные характеристики.
- •2.1. Транзистор со встроенным каналом.
- •2 .2. Транзисторы с индуцированным каналом.
- •Достоинства полевого транзистора по сравнению с биполярным транзистором. Недостатки. Достоинства полевого транзистора с p-n переходом. Недостатки.
- •Схемы включения полевых транзисторов: общий исток, общий сток, общий затвор.
- •Бтиз (igbt) – биполярный транзистор с изолированным затвором. Достоинства по сравнению с моп.
- •Обратные связи (ос): отрицательная обратная связь (оос), положительная обратная связь (пос). Применение. Коэффициент ос. Ос по способам подачи сигнала и по способу снятия сигнала.
- •Ос последовательная по напряжению и по току. Схемы. Основные параметры.
- •Ос параллельная по напряжению и по току. Схемы. Основные параметры.
- •Усилители постоянного тока (упт). Параметры. Применение. Упт с непосредственной связью между каскадами. Схема. Достоинства и недостатки. Применение.
- •Метод мдм (модуляция-демодуляция). Достоинства и недостатки.
- •Дифференциальные усилители (ду). Схема включения. Ду в режиме покоя, в режиме усиления противофазного сигнала, в режиме усиления синфазного сигнала. Способ улучшения свойств усилителя (схема).
- •С пособы компенсации начального напряжения смещения. Схема.
- •Ду с динамической нагрузкой. Схема.
- •Операционные усилители (оу). Графическое изображение. Упрощенная схема оу.
- •Классификация оу по типам входных каскадов: бпт, пт, супер β-бпт, с гальванической изоляцией входа от выхода, варикап.
- •Динамическое питание оу. Недостаток.
- •Параметры оу (входные, выходные и динамические). Характеристики. (Схема в вопр 32)
- •Инвертирующие усилители (схемы). Параметры. Достоинства и недостатки.
- •2. Параметры:
- •3. Достоинства и недостатки:
- •Преобразователь тока в напряжение. Неинвертирующий усилитель (схема). Достоинства и недостатки.
- •Сумматоры и вычетатели. Неинвертирующий сумматор (схема). Недостаток. Инвертирующий сумматор (схема). Достоинства и недостатки. Применение. Вычетатель.
- •Интегратор и дифференциатор. Схемы. Применение.
- •Компараторы (устройства сравнения). Схемы. Недостатки.
- •Триггер Шмидта (компаратор с гистерезисом). Схемы. Недостаток.
- •Генераторы синусоидальных колебаний. Условия для работы схемы в режиме генерации.
- •Генераторы гармонических сигналов. Схема. Достоинства и недостатки.
- •Кварцевый генератор. Схема. Достоинства и недостатки.
- •М ультивибраторы (генераторы прямоугольных колебаний). Схема.
- •Источники электропитания. Классификация.
- •Компенсационные. Параметрические. Достоинства и недостатки.
- •Н а транзисторах.
- •Повышающий стабилизатор. Схема. Принцип работы.
- •Функциональная схема ключевого источника питания (принципиальная схема). Принцип р аботы.
- •Последовательный компенсационный стабилизатор напряжения на транзисторе. Схема и п ринцип работы.
- •Интегральный стабилизатор напряжений. Схема. Принцип работы.
- •Тепловое сопротивление.
- •Параллельное и последовательное включения транзисторов. Схемы и их назначение.
- •Источники опорного напряжения. Задание рабочего тока стабилитрона, источника тока на оу. Стабилитронные интегральные микросхемы.
- •Трехвыводные и четырехвыводные стабилизаторы. Простейший способ увеличения тока. Схемы. Недостатки.
- •Стабилизатор тока. Зарядное устройство (простое) с ограничением тока заряда. Сдвоенные стабилизаторы, их достоинства. Схемы.
- •Стабилизаторы-ограничители переменного напряжения.
- •Регулятор-стабилизатор напряжений на тиристоре.
- •Последовательные устройства. Триггеры: по количеству входов, по способу ввода информации. Способы управления: со статическим и динамическим управлением.
- •Последовательные устройства. Регистры.
- •Счетчик Джонсона. Схема и принцип работы.
- •Счетчики и делители. Достоинства и недостатки. Классификация счетчиков: по коэффициенту или модулю счета, по направлению счета, по способу организации внутренних связей.
- •Синхронные счетчики. Счетчики кмоп. Способы измерения коэффициента пересчета.
- •Комбинационная логика. Мультиплексоры. Демультиплексоры и дешифраторы. Шифраторы. Компараторы. Схемы контроля четности. Сумматоры. Цап и ацп.
Стабилизатор тока. Зарядное устройство (простое) с ограничением тока заряда. Сдвоенные стабилизаторы, их достоинства. Схемы.
Сдвоенные стабилизаторы.
D
A2
совместно с VT2
поддерживает на выходе отрицательного
стабилизатора напряжение, чтобы
напряжение в т. А было равным нулю.
Стабилизированные источники тока.
При Iз < 0,6 A происходит заряд конденсатора т.к. Uаб > 7B >6B. Как только Iз > 0,6 A Uаб => 0,6B, VT открывается, что понижает потенциал т.С и уменьшает зарядное напряжение вплоть до 125 В. Изменяя R3 можно изменить ток заряда, то Iз должен быть менее 1 А. Idamax=1.5A.
Стабилизаторы-ограничители переменного напряжения.
двуханодный стабилитрон
Регулятор-стабилизатор напряжений на тиристоре.
Стабилизация напряжения осуществляется путём изменения тока заряда С за счёт преоткрывания либо запирания VT, если напряжение базы эмиттер будет отличаться от величины 0.6.
Одновременная подача управляющего напряжения на все тиристоры моста используется в относительно маломощных выпрямителях из-за более простых схем выпрямления. В мощных силовых выпрямителях управляющий сигнал должен подаваться только на тиристор, смещённый в прямом направлении, либо в противном случае уменьшается max допустимое обратное напряжение на тиристоре и снижается надёжность его работы.
Цифровая электроника. Серии микросхем (РТЛ (резистор-транзисторная логика), ДТЛ (диодно- транзисторная логика), ТТЛ (транзистор–транзисторная логика), ТТЛШ (транзистор–транзисторная логика с диодами Шоттки)). Обычная ТТЛ. Достоинства. Классы логических микросхем.
Серии микросхем:
РТЛ (уже не используются сейчас) ДТЛ (уже не используются сейчас) ТТЛ или ТТЛШ
В основе – многоэммитерный транзистор.
Е
сли
на всех входах «1»
, то на коллекторе
эмиттерный переход закрыт, а коллекторный
открыт и напряжение на базе VT1=1.8
В. VT2
и VT5
открыты, VD4
–предназначен для надежного запирания
VT4.
R3,
R4
и VT3
действуют как резистор и предназначены
для увеличения помехоустойчивости.
Е
сли
на любом из входов «0»,
то VT1
переключается из инверсного в активный
режим и отпирается. В этом случае
напряжение на его коллекторе (0,8В) уже
недостаточно для отпирания VT4
и VT5.
VT4
при этом открыт и на выходе появляется
логическая единица.
R5 предназначен для защиты выходов при кратковременном замыкании на землю.
Транзистор находится в инверсном состоянии, т.к. напряжение на коллекторе (1,2В) меньше чем на эммитере (2,4В).
При высоких уровнях на входе VT1 находится в инверсном состоянии, VT2 и VT4 открыты, коллекторный переход на VT1 открыт, VT3 закрыт, на выходе (0,4В) – логический 0.
Транзистор находится в инверсном состоянии, т.к. напряжение на коллекторе (1,2В) меньше чем на эммитере (2,4В).
При высоких уровнях на входе VT1 находится в инверсном состоянии, VT2 и VT4 открыты, коллекторный переход на VT1 открыт, VT3 закрыт, на выходе (0,4В) – логический 0.
Если на одном из входов логический 0 (0,4В) Uк>Uэ, VT1, VT4 закрыты, VT3 открыт, на входе 2.4В, VT1 открыт и включен в усилительном режиме, на выходе логическая 1.
Достоинства: высокое быстродействие
Недостатки: низкое входное сопротивление => высокие входные токи и потребляемая мощность, также и в режиме покоя.
МОП и КМОП ЭСЛ И2Л
Логические схемы делятся на классы:
Комбинационные устройства – характеризуются отсутствием памяти (память – свойство системы сохранять в течении требуемого времени значение сигнала, характеризующее внутреннее состояние цифрового устройства). Сигнал на выходе комбинационного устройства в любой момент времени однозначно определяется сочетанием сигналов на входе и не зависит от его предыдущего состояния. Схемным признаком таких схем является осуществление в цепи обратной связи. Примеры: логические элементы, эл. ключи, дешифраторы, арифметические устройства.
Последовательные устройства – информация на выходе, которая зависит не только от информации на входах в данный момент времени, но и от предыдущего состояния устройства (обладают памятью) Простейшие из них – триггеры, счетчики, резисторы, запоминающие устройства.