Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
матан-шпоры.docx
Скачиваний:
8
Добавлен:
22.09.2019
Размер:
444.38 Кб
Скачать
  1. Формула интегрирования по частям в определенном интеграле.

Формула интегрирования по частям в определенном интеграле.

[T] Если функция u(x) и v(x) имеют непрерывные производные на сегменте [a,b] то справедлива формула Доказательство Так как функция u(x) и v(x) по условию имеют производные, то по правилу дифференцирования произведения [u(x)v(x)]’=u(x)v’(x)+v(x)u’(x). Откуда следует, что функция u(x)v(x) является первообразной для функции u(x)v’(x)+v(x)u’(x). А т.к. функция u(x)v’(x)+v(x)u’(x) непрерывна на отрезке [a,b], то интеграл от нее существует, т.е. она интегрируема на этом отрезке и по формуле Ньютона-Лейбница

Отсюда по свойству 4 определенных интегралов получим, что то же , ч т.д.

Приложение определенного интеграла Рассмотрим криволинейную трапецию, ограниченную снизу сегментом [a,b] оси Ох, с боков прямыми x=a, x=b и графиком непрерывной и неотрицательной функции y=f(x) на [a,b]. Докажем, что площадь этой криволинейной трапеции S=

Доказательство: Разобьем произвольно отрезок [a,b] на n частей, т.е. рассмотрим разбиение сегмента [a,b] на {Xn} точками a=Xo<X1<X2<…<Xi-1<Xi<…<Xn=b, выберем на каждом частичном отрезке [Xi-1, Xi], I=1,2,…,n? Произвольно точку I (Xi-1IXi) и рассмотрим ступенчатую фигуру. Ее площадь будет приблизительно равной площади криволинейной трапеции. S , где хi= хi- хi-1.Таким образом, получена интегральная сумма . Т.к. Функция f(x) непрерывна на [a,b], то предел этой суммы существует при = и площадь S криволинейной трапеции численно равна определенному интегралу от функции f(x) на [a,b] S=

Геометрический смысл определнного интеграла: определенный интеграл от неотрицательной непрерывной функции f(x) на [a,b] численно равен площади криволинейной трапеции с основанием [a,b] ограниченной сверху графиком функции y=f(x).

  1. Несобственные интегралы с бесконечными пределами.

Несобственные интегралы.

При рассмторении опред. интеграла как предела интегральных сумм предполагалось, что подынтегральная функция ограничена на конечном отрезке интегрирования. Данное выше определение опред. интеграла не имеет смысла, если не выполняется хотя бы одно из этих условий. Нельзя разбить бесконеч. интервал на конечное число отрезков конечной длины, при неограниченной функции интегральная сумма не имеет предела.

В связи с этим вводят понятие несобственного интеграла 1 и 2 рода.

Интегралы с бесконечными пределами интегрирования.

Пусть функция f(x) определена на промежутке [a; +) и интегрируема на любом отрезке [a,R], R>0, так что интеграл имеет смысл, Предел этого интеграла при R называется несобственным интегралом первого рода и обозначается . В случае, если этот предел конечен, говорят, что несобственный интеграл сходится, а функцию f(x) называют интегрируемой на бесконечном промежутке [a, +), если же предел бесконечен или не существует, то говорят, что несобственный интеграл расходится.

Аналогично вводится понятие несобственного интеграла по промежутку (-, b]. . Наконец, несобственный интеграл с двумя бесконечными пределами можно определить как сумму несобственных интегралов , где с- любое число.

Геометр. смысл несобств. интеграла первого рода основан на геометр. интерпретации опред. интеграла на отрезке [a,R]: это площадь бесконеч. области, огранич. сверху неотриц. функцией f(x), снизу осью Ох, слева- прямой х=а. Такая же интерпретация имеет место и для остальных несобств. интегралов.. y=f(x)

а R