Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lektsii_TMM.doc
Скачиваний:
12
Добавлен:
22.09.2019
Размер:
4.28 Mб
Скачать

Режимы движения машины

Процесс движения машинного агрегата в общем случае состоит из трех фаз: разбега, установившегося режима и выбега. Разбег и выбег относятся к неустановившемуся режиму, который характеризуется непериодическими, т. е. неповторяющимися, изменениями скорости главного вала агрегата (начального звена). При установившемся режиме скорость главного вала изменяется периодически. В частном случае скорость может быть постоянной. Часто установившееся движение чередуется с разгонами (при повышениях скоростного режима) и торможениями (при понижениях скоростного режима). Так работает, например, автомобильный двигатель. Многие механизмы в установившемся режиме вообще не работают. Это особенно характерно для целого ряда приборов (реле, контакторы и т. п.). Их механизм во время срабатывания переходит из одного положения в другое, не совершая замкнутого повторяющегося кинематического цикла.

Циклом называют период времени или период изменения обобщенной координаты, через который все параметры системы принимают первоначальные значения.

  1. Разгон (разбег) ;

  2. Установившееся движение ;

  3. Торможение (выбег) .

Установившийся режим движения машины.

Установившийся режим движения машины наступает тогда, когда работа внешних сил за цикл не изменяет ее энергии, то есть суммарная работа внешних сил за цикл движения равна нулю.

Период изменения скорости начального звена (обобщенной ско­рости механизма) называется циклом установившегося движения или сокращенно циклом. Время цикла равно или кратно периоду действия сил. Поэтому при установившемся режиме сумма работ всех сил за цикл равна нулю, а так как работа сил тяжести за цикл равна нулю, то это равенство будет выполняться, если работа движущих сил за цикл равна работе всех сил сопротивления за цикл (по модулю):

Установившееся движение где

и - соответственно работа за цикл движущих сил и сил сопротивления,

- начальное значение обобщенной координаты,

- приращение обобщенной координаты за цикл.

Решение задачи регулирования хода машины по методу н.И.Мерцалова.

При расчете маховика (или решении задачи регулирования хода машины) по методу Н.И.Мерцалова задача решается в следующей последовательности:

  • Определяются параметры динамической модели, например для ДВС - приведенный суммарный момент движущих сил и - приведенный момент инерции второй группы звеньев.

  • Определяется работа движущих сил: т.к. , то после построения диаграммы , методом графического интегрирования может быть получена диаграмма , конечная ордината которой позволяет получить работу движущих сил за цикл: .

  • Основным условием установившегося режима является равенство работ сил движущих и сил полезного сопротивления за цикл. , или .

  • Из условия, что , следует где: – для двухтактного двигателя, – для четырехтактного двигателя. Работу сил полезного сопротивления определяет линейная зависимость , графически ее можно представить в виде прямой линии.

  • Исходя из того, что работа суммарная равна алгебраической сумме работ сил движущих и сил полезного сопротивления: , очевидно, что для построения диаграммы необходимо графически сложить ординаты кривой и прямой , с учетом знака, при этом конечная ордината диаграммы должна быть равна нулю, в соответствии с основным условием установившегося режима работы механизма.

  • На основании теоремы об изменении кинетической энергии , т.е. . Соответственно, если ось абсцисс графика работы перенести вниз на некую величину , то относительно этой новой оси график работы и будет выражать изменение за цикл полной кинетической энергии машинного агрегата.

  • С другой стороны кинетическую энергию можно разбить на две части . Для нахождения необходимого момента инерции нас интересует кинетическая энергия второй группы звеньев.

  • Для построения диаграммы воспользуемся выражением , где: . . Учитывая, что и , ограничимся членами первого порядка малости, т.е. . (Первое допущение Мерцалова). Такое допущение позволяет считать диаграмму приведенного момента инерции второй группы звеньев в масштабе диаграммой кинетической энергии второй группы звеньев в масштабе . При этом ; , здесь .

  • Для получения диаграммы кинетической энергии первой группы звеньев достаточно из полной кинетической энергии машинного агрегата вычесть кинетическую энергию второй группы звеньев. Т.к. , то чтобы вычесть из диаграммы работы диаграмму кинетической энергии второй группы звеньев, необходимо, чтобы эти диаграммы были в одном масштабе , то есть ординаты диаграммы кинетической энергии второй группы звеньев должны быть пересчитаны по формуле: .

  • Далее на полученном графике определяют положение и , для того, чтобы показать . Рассчитав , можно определить момент инерции первой группы звеньев.

Из этого выражения, определив предварительно , можно решить две задачи:

  • задачу синтеза - при заданном определить необходимый для его обеспечения приведенный момент инерции и решить вопрос о наличии маховика.

  • задачу анализа - при заданном определить обеспечиваемый им коэффициент неравномерности .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]