Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lektsii_TMM.doc
Скачиваний:
12
Добавлен:
22.09.2019
Размер:
4.28 Mб
Скачать

Методика приведения сил

Методика приведения сил основана на равенстве элементарных работ или мгновенных мощностей исходного машинного агрегата и заменяющей его динамической модели.

Вид нагрузки

Элементарная работа

Мгновенная мощность

сила

знак определяется знаком

-

применяется в том случае, когда сила или перемещение (скорость) имеют проекцию только на одну координатную ось, например сила веса, знак определяется знаками соответствующих проекций

Момент

знак определяется направлением поворота (угловой скорости), если момент сонаправлен с изменением угла поворота (угловой скорости), то работа (мощность) положительна, если нет – отрицательна

Окончательно

  • для механической системы

    Элементарная работа

    Мгновенная мощность

  • для модели

Элементарная работа

Мгновенная мощность

Приравнивая элементарные работы или мгновенные мощности исходного машинного агрегата и динамической модели, получаем формулу для определения приведенного суммарного момента динамической модели

Элементарная работа

Мгновенная мощность

В любом машинном агрегате приведенный суммарный момент динамической модели состоит из 2-х частей:

,

- суммарный момент движущих сил является постоянной величиной для рабочих машин (насосов, станков, компрессоров и пр.) и приложен к звену приведения; переменная величина для двигателей и приводится к начальному звену.

- суммарный момент сил полезного сопротивления является постоянной величиной для двигателей и приложен к звену приведения; переменная величина для рабочих машин (насосов, станков, компрессоров и пр.) и приводится к начальному звену.

Методика приведения масс

Методика приведения масс основана на равенстве кинетических энергий исходного машинного агрегата и заменяющей его динамической модели. Запишем для них уравнение изменения кинетической энергии.

Кинетическая энергия:

Движение твердого тела

Кинетическая энергия

Вращение

Поступательное движение

Плоское движение

Окончательно

  • для механической системы

,

где - число звеньев двигающихся вращательно, - момент инерции этих звеньев относительно точки закрепления, если центр масс не лежит на оси, то применяют теорему Штейнера –Гюйгенса:

,

где - расстояние от центра масс звена до оси вращения, - момент инерции звеньев относительно центра масс, - число звеньев, движущихся плоско, - число звеньев движущихся поступательно.

  • для модели (вращающейся)

Модель будет энергетически эквивалентна рассматриваемой механической системе, если правые и левые части уравнений изменения кинетической энергии для модели и для системы будут соответственно равны.

Подставляя в равенства, записанные ранее выражения для кинетических энергий, получим:

Из уравнения для левых частей получаем формулу для определения приведенного суммарного момента инерции динамической модели

В любом машинном агрегате приведенный суммарный момент инерции динамической модели состоит из 2-х частей:

- приведенный момент инерции первой группы звеньев. К первой группе звеньев относятся те звенья, которые имеют постоянное передаточное отношение со звеном приведения.

- приведенный момент инерции второй группы звеньев. Ко второй группе звеньев относятся те звенья, которые не имеют постоянного передаточного отношения со звеном приведения.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]