
- •Машины и их классификация.
- •Типы звеньев рычажных механизмов.
- •Классификация кинематических пар.
- •Классификация кинематических пар по числу связей и по подвижности.
- •Подвижность механизма.
- •Структура механизмов.
- •Понятие о структурном синтезе и анализе.
- •Основные понятия структурного синтеза и анализа.
- •Избыточные связи и лишние степени свободы (и их устранение).
- •Структурная классификация механизмов по Ассуру л.В.
- •Геометрические и кинематические характеристики механизма
- •3 Метод планов положений, скоростей и ускорений (графоаналитический метод)
- •Динамика машин и механизмов.
- •Основные задачи динамики машин.
- •Классификация сил, действующих в механизмах.
- •Механические характеристики двигателей и рабочих машин
- •Силы в кинематических парах плоских механизмов (без учета трения).
- •Методика приведения сил
- •Методика приведения масс
- •Прямая задача динамики машин.
- •Уравнения движения машинного агрегата в энергетической и дифференциальной форме Уравнение движения в интегральной или энергетической форме
- •Уравнение движения в дифференциальной форме.
- •Режимы движения машины
- •Решение задачи регулирования хода машины по методу н.И.Мерцалова.
- •Определение закона движения начального звена механизма при установившемся режиме движения
- •Уравновешивание механизмов и балансировка роторов. Общие сведения о балансировке
- •Понятие о неуравновешенности механизма (звена).
- •Балансировка роторов.
- •Балансировка роторов при различных видах неуравновешенности.
- •1. Статическая неуравновешенность.
- •2.2. Моментная неуравновешенность.
- •2.3. Динамическая неуравновешенность (полная).
- •Уравновешивание роторов при проектировании
- •Порядок балансировки на балансировочном оборудовании. Станок Шитикова
- •Силовой расчет рычажных механизмов
- •Исходные данные для силового расчета
- •Силовой расчет позволяет определить
- •Порядок силового расчета
- •Основы теории высшей кинематической пары Введение в теорию высшей пары, основные понятия и определения
- •Механизмы с высшими кинематическими парами и их классификация
- •Структурные схемы простейших механизмов с высшими кп
- •Угол давления в высшей паре
- •Основная теорема зацепления (теорема Виллиса)
- •Зубчатые передачи и их классификация.
- •Эвольвентная зубчатая передача
- •Эвольвента окружности и ее свойства
- •Параметрические уравнения эвольвенты
- •Эвольвентное зацепление и его свойства.
- •Параметры эвольвентного зацепления
- •С войства эвольвентного зацепления
- •Эвольвентное зубчатое колесо и его параметры. Параметры эвольвентного зубчатого колеса
- •Связь делительной окружности с основной окружностью и окружностью произвольного радиуса
- •Методы изготовления эвольвентных зубчатых колес.
- •Станочное зацепление. Подрез и заострение зубьев. Понятие о исходном, исходном производящем и производящем контурах
- •Станочное зацепление
- •Основные размеры зубчатого колеса
- •Толщина зуба колеса по окружности произвольного радиуса.
- •Подрезание и заострение зубчатого колеса.
- •Подрезание эвольвентных зубьев в станочном зацеплении
- •Понятие о области существования зубчатого колеса.
- •Основные уравнения эвольвентного зацепления
- •2. Межосевое расстояние
- •4. Уравнительное смещение
- •Классификация зубчатых передач
- •Качественные показатели цилиндрической эвольвентной передачи.
- •Коэффициент торцевого перекрытия
- •Коэффициент удельного давления.
- •Коэффициент удельного скольжения.
- •Коэффициент осевого перекрытия.
- •Многозвенные зубчатые механизмы
- •Кинематика рядового зубчатого механизма
- •Планетарные механизмы
- •Проектирование типовых планетарных механизмов Постановка задачи синтеза планетарных механизмов
- •Подбор чисел зубьев методом неопределенных коэффициентов (метод сомножителей)
- •Проектирование кулачковых механизмов Кулачковые механизмы
- •Назначение и область применения
- •Выбор закона движения толкателя кулачкового механизма
- •Классификация кулачковых механизмов
- •Достоинства кулачковых механизмов
- •Недостатки кулачковых механизмов
- •Основные параметры кулачкового механизма
- •Г еометрическая интерпретация аналога скорости толкателя
- •Влияние угла давления на работу кулачкового механизма
- •Синтез кулачкового механизма. Этапы синтеза
- •Выбор радиуса ролика (скругления рабочего участка толкателя)
Классификация кинематических пар по числу связей и по подвижности.
Класс пары |
Число связей |
Подвижность |
Пространственная схема (пример) |
Условные обозначения |
I |
1 |
5 |
|
|
II |
2 |
4 |
|
|
III |
3 |
3 |
|
|
IV |
4 |
2 |
|
|
V |
5 |
1 |
|
|
Подвижность механизма.
Обобщенные координаты механизма.
Положение твердого тела, свободно движущегося в пространстве, полностью определяется шестью независимыми координатами, за которые можно принять три координаты начала подвижной системы координат, связанной с телом, и три угла Эйлера, определяющие расположение осей подвижной системы координат относительно неподвижной. Их принято называть обобщенными, так как они определяют положение всего твердого тела. Аналогично обобщенными координатами механизма называют независимые между собой координаты, определяющие положения всех звеньев механизма относительно стойки.
Число степеней свободы механизма.
Пространственный механизм.
W = H- S=6n-(5 p5+4 p4+3 p3+2 p2+1 p1)
W =6n -5 p5 - 4 p4 - 3 p3 - 2 p2 - p1
Сомова-Малышева.
Плоский механизм.
На плоскости H=3, при этом каждая одноподвижная пара накладывает 2 связи, двухподвижная – одну. К пятому классу на плоскости относятся высшие пары, к четвертому – низшие. Таким образом, формула преобразуется к виду:
W = 3n - 2 pн – pв, формулы Чебышева.
Структура механизмов.
Структурная схема - графическое изображение механизма, выполненное с использованием условных обозначений рекомендованных ГОСТ (см. например ГОСТ 2.703-68) или принятых в специальной литературе, содержащее информацию о числе и расположении элементов (звеньев, групп), а также о виде и классе кинематических пар, соединяющих эти элементы. В отличие от кинематической схемы механизма, структурная схема не содержит информации о размерах звеньев и вычерчивается без соблюдения масштабов. (Примечание: кинематическая схема - графическая модель механизма, предназначенная для исследования его кинематики.)
Понятие о структурном синтезе и анализе.
Как на любом этапе проектирования при структурном синтезе различают задачи синтеза и задачи анализа.
Задачей структурного анализа является задача определения параметров структуры заданного механизма - числа звеньев и структурных групп, числа и вида КП, числа подвижностей (основных и местных), числа контуров и числа избыточных связей.
Задачей структурного синтеза является задача синтеза структуры нового механизма, обладающего заданными свойствами: числом подвижностей, отсутствием местных подвижностей и избыточных связей, минимумом числа звеньев, с парами определенного вида (например, только вращательными, как наиболее технологичными) и т.п.