
- •Утверждаю Заведующий кафедрой
- •1. Бортовые измерения и требования к ним
- •2. Системы бортовых измерений и их элементы
- •3. Структура и состав иис
- •4. Преобразование информации в измерительных каналах
- •5. Основные характеристики и параметры иис
- •6. Условия и особенности эксплуатации иис
- •7. Подготовка средств измерений к испытаниям
- •1. Измеряемые физические величины и их классификация
- •2. Методы измерений
- •3. Методы преобразования физической величины в электрический сигнал
- •1. Датчики высоты и скорости
- •2. Датчики перегрузки (линейного ускорения), угловой скорости и углового ускорения
- •3. Датчики углового положения самолета в пространстве
- •4. Датчики аэродинамических углов атаки и скольжения
- •1. Основные принципы построения
- •2. Методы отбора измеряемого давления
- •3. Потенциометрические датчики
- •4. Датчики с пневмокоммутаторами давления
- •5. Индуктивные датчики
- •6. Пьезоэлектрические датчики
- •7. Полупроводниковые датчики
- •1. Датчики измерения температуры.
- •1.2. Датчики температуры газовых потоков
- •1.3. Датчики температуры элементов конструкции
- •2. Датчики вибраций
- •3. Датчики сил, моментов, деформаций
- •3.1. Датчики сил и моментов
- •3.2. Датчики деформаций
- •4. Датчики частоты вращения роторов газотурбинных двигателей
- •5. Датчики расхода топлива
- •1. Согласующие устройства
- •2. Бортовые системы регистрации
- •2.1. Требования к накопителям информации
- •2.2. Самописцы
- •2.3. Светолучевые осциллографы
- •2.4. Аппаратура точной магнитной записи
- •2.5. Информационно–измерительные системы для летных испытаний
- •2.5.1. Информационно-измерительная система «Гамма–к»
- •2.5.2. Информационно–измерительная система «Гамма–ач»
- •3. Радиотелеметрические и совмещенные системы
- •3.2. Совмещенные автоматизированные системы
- •1. Измерительная трасса
- •2. Методы измерения траектории
- •3. Средства для траекторных измерений
- •4. Система единого времени
- •5. Глобальная позиционная система местоопределения «gps – глонасс»
- •1. Погрешности измерений. Классификация погрешностей
- •2. Критерии оценки погрешностей
- •3. Погрешности информационно–измерительных систем. Методы оценки
4. Датчики частоты вращения роторов газотурбинных двигателей
Вращательное движение вала может быть охарактеризовано частотой его вращения n и угловой скоростью . Частоту вращения в механике принято измерять в Гц и выражать в с–1, а угловую скорость – в рад/с.
При летных испытаниях результаты измерения частоты вращения роторов газотурбинных двигателей приводятся в абсолютном значении (об/мин) или в % от ее значения на максимальном расчетном режиме. При этом допустимые значения погрешности составляют 0,05...0,2%.
Измерение частоты вращения роторов газотурбинных двигателей при летных испытаниях основано на принципах электрической или механической передач частоты вращения вала ротора двигателя валу датчика. Обобщенная схема методов и средств измерения частоты вращения роторов газотурбинных двигателей приведена на рис. 3.
Рис. 3. Методы и средства измерения частоты вращения роторов газотурбинных двигателей при летных испытаниях.
Наибольшее распространение получил бесприводный магнитоиндукционный метод, основанный на зависимости наводимых в металлическом теле датчика вихревых токов от частоты вращения вала двигателя. Применяется также приводной метод на базе датчика – тахогенератора переменного трехфазного тока. Принцип действия бесприводных магнитоиндукционных датчиков основан на явлении наведения вихревых токов в неподвижном датчике, находящемся во вращающемся магнитном поле. Датчик состоит из постоянного цилиндрического магнита, на котором размещена катушка, выполненная из термостойкого провода.
Мерой измеряемой
частоты вращения является момент
взаимодействия наводимых в датчике
индукционных токов с вызвавшим их
вращающимся магнитным полем. Последнее
создается шестерней – индуктором ротора
газотурбинного двигателя, выполненной
из ферромагнитного материала или
постоянным магнитом, размещаемым на
вращающемся элементе – индукторе
силовой установки. Схема преобразования
сигнала в магнитоиндукционном датчике
может быть представлена в виде
.
Частота n
ротора связана с частотой вращения
шестерни–индуктора (или постоянного
магнита на элементе индуктора) силовой
установки. При прохождении торца зуба
шестерни–индуктора (или торца постоянного
магнита на элементе индуктора) вблизи
магнита датчика, зазор между ними
изменяется, и в обмотке датчика (за счет
изменения сопротивления магнитной цепи
постоянного магнита датчика) индуцируются
электрические импульсы напряжения (
).
Электрический сигнал Uf
датчика с частотой fд,
пропорциональной частоте вращения вала
силовой установки, поступает по линии
связи на вход согласующего устройства,
в котором преобразуется в частоту
следования импульсов
.
Эти импульсы можно подсчитать за данный
временной интервал.
Частота вращения
ротора газотурбинного двигателя
определяется согласно выражению
(об/мин), где fд
– частота сигнала датчика, Гц; z
– число зубьев шестерни–индуктора или
число магнитов.
Диапазон частот магнитоиндукционных датчиков лежит в пределах 500...15 000 Гц. Амплитуда выходного напряжения датчика составляет при этом 0,2 … 30 В.
Приводные
электрические датчики–тахогенераторы
трехфазного переменного тока состоят
из ротора – постоянного магнита и
статорной обмотки. Принцип действия
датчика обусловлен жесткой связью
роторов датчика и газотурбинного
двигателя и основан на преобразовании
частоты вращения этих роторов в ЭДС в
статорной обмотке датчика с частотой,
пропорциональной частоте вращения
ротора газотурбинного двигателя. Частота
вращения ротора двигателя при этом
определяется согласно выражению
(об/мин), где
– передаточное отношение от вала
двигателя к валу датчика.
Поскольку частота электрических импульсов является мерой частоты вращения ротора газотурбинного двигателя, в практике летных испытаний используются общеизвестные достоинства частотных каналов измерения данного параметра (высокая точность, простое сопряжение с устройствами обработки цифровых сигналов, большая помехоустойчивость).
Некоторые образцы аппаратуры точной магнитной записи комплектуются преобразователями частотной и кодовой информации.
Принцип работы, например, частотомера основан на методе счета числа импульсов образцовой частоты за определенное число периодов измеряемой частоты. Критерием правильности выбора образцовой частоты и длительности измерения является получение результата измерений с погрешностью 0,2%, что выполняется при заполнении счетчика за время измерения не менее 512 импульсами образцовой частоты. Предварительное формирование сигналов датчиков переменного тока осуществляет блок трансформаторов, входящий в состав частотомера. Формирование сигналов магнитоиндукционных датчиков осуществляется в специальном согласующем устройстве. При этом частота сигналов воспринимается, преобразуется и регистрируется в виде десятиразрядного двоичного параллельного кода.
Одним из основных направлений является метод отбора электрических сигналов от штатных вычислительных цифровых устройств электронный систем управления двигателями. Эти системы обеспечивают весьма высокую точность и быстроту преобразования частоты вращения роторов двигателя в машинный код, который формируется, подается на преобразователь кодовой информации и регистрируется цифровой аппаратурой точной магнитной записи.
Основными источниками погрешностей датчиков частоты вращения являются инструментальные погрешности, обусловленные изменением электрофизических свойств элементов и узлов магнитоиндукционных датчиков от температуры окружающей среды. В датчиках переменного тока погрешность определяется трением в подшипниках измерительного узла.
Применение совершенных конструктивно–технологических и схемотехнических решений позволяет свести к минимуму указанные погрешности. Методические погрешности в частотных датчиках практически отсутствуют.
Установка бесприводных магнитоиндукционных датчиков должна проводиться на основаниях из немагнитного материала на расстоянии не менее 50 мм от других вращающихся ферромагнитных элементов и деталей газотурбинного двигателя.
При установке приводных датчиков переменного трехфазного тока необходимо соблюдать технологию его подсоединения к приводу авиационного газотурбинного двигателя.