
- •Утверждаю Заведующий кафедрой
- •1. Бортовые измерения и требования к ним
- •2. Системы бортовых измерений и их элементы
- •3. Структура и состав иис
- •4. Преобразование информации в измерительных каналах
- •5. Основные характеристики и параметры иис
- •6. Условия и особенности эксплуатации иис
- •7. Подготовка средств измерений к испытаниям
- •1. Измеряемые физические величины и их классификация
- •2. Методы измерений
- •3. Методы преобразования физической величины в электрический сигнал
- •1. Датчики высоты и скорости
- •2. Датчики перегрузки (линейного ускорения), угловой скорости и углового ускорения
- •3. Датчики углового положения самолета в пространстве
- •4. Датчики аэродинамических углов атаки и скольжения
- •1. Основные принципы построения
- •2. Методы отбора измеряемого давления
- •3. Потенциометрические датчики
- •4. Датчики с пневмокоммутаторами давления
- •5. Индуктивные датчики
- •6. Пьезоэлектрические датчики
- •7. Полупроводниковые датчики
- •1. Датчики измерения температуры.
- •1.2. Датчики температуры газовых потоков
- •1.3. Датчики температуры элементов конструкции
- •2. Датчики вибраций
- •3. Датчики сил, моментов, деформаций
- •3.1. Датчики сил и моментов
- •3.2. Датчики деформаций
- •4. Датчики частоты вращения роторов газотурбинных двигателей
- •5. Датчики расхода топлива
- •1. Согласующие устройства
- •2. Бортовые системы регистрации
- •2.1. Требования к накопителям информации
- •2.2. Самописцы
- •2.3. Светолучевые осциллографы
- •2.4. Аппаратура точной магнитной записи
- •2.5. Информационно–измерительные системы для летных испытаний
- •2.5.1. Информационно-измерительная система «Гамма–к»
- •2.5.2. Информационно–измерительная система «Гамма–ач»
- •3. Радиотелеметрические и совмещенные системы
- •3.2. Совмещенные автоматизированные системы
- •1. Измерительная трасса
- •2. Методы измерения траектории
- •3. Средства для траекторных измерений
- •4. Система единого времени
- •5. Глобальная позиционная система местоопределения «gps – глонасс»
- •1. Погрешности измерений. Классификация погрешностей
- •2. Критерии оценки погрешностей
- •3. Погрешности информационно–измерительных систем. Методы оценки
6. Пьезоэлектрические датчики
Эти датчики широко применяются для измерения быстроменяющихся (динамических) давлений, например, в газовоздушном тракте газотурбинных двигателей.
Принцип действия датчика и основные его особенности аналогичны работе пьезоэлектрического акселерометра, который будет рассмотрен в следующих лекциях. Существенное значение для пьезоэлектрических датчиков давления имеет виброчувствительность, которая определяется как в осевом направлении, так и в направлении, перпендикулярном оси датчика. Мерой виброчувствительности датчика является его виброэквивалент, определяемый через величину эквивалентного давления, соответствующую единице виброперегрузки и выраженную в децибелах.
Для ограничения воздействия вибраций на результаты измерения давления используются виброкомпенсированные датчики давления. Идея виброкомпенсации заключается во введении в конструкцию датчика дополнительного чувствительного элемента, генерирующего сигнал, пропорциональный только вибрациям. В процессе измерения давление действует на один чувствительный элемент, а виброускорение – на оба чувствительных элемента. Электрически чувствительные элементы включены встречно так, что заряды, пропорциональные виброускорению, компенсируются.
Плоские упругие мембраны чувствительного и виброкомпенсирующего элементов выполнены из титанового сплава и заделаны в кольце жесткости корпуса. К мембранам приклеены пьезопластины, выполненные из пьезокерамического материала, например, ЦТС–19, и имеющие идентичные механические и электрические параметры. Электрический сигнал, снимаемый с пьезопластин чувствительного и виброкомпенсирующего элементов, с помощью подпаянных к ним проводников, подводится к контактной втулке, а с нее – на микроразъем датчика. Вывод сигнала датчика осуществляется по однопроводной схеме. Конструкция датчика влагозащитная. Для измерения давления при высоких температурах, например, в камерах сгорания газотурбинных двигателей, применяют датчики с принудительным охлаждением.
Резонансные свойства пьезоэлектрических датчиков определяются характеристиками всей конструкции датчика в целом. Датчики могут иметь сложный спектр собственных резонансных частот, свидетельствующий о том, что датчики представляют собой сложные многомассовые механические системы со многими степенями свободы. Поэтому АЧХ датчики получают, как правило, экспериментальным путем с помощью специальных установок. Основным источником погрешности датчика является температура окружающей среды. Пути снижения температурной погрешности пьезоэлектрических датчиков будут рассмотрены в последующих лекциях. Установка датчиков на объекте осуществляется, в частности, с помощью резьбового соединения, имеющегося на корпусе датчика.
7. Полупроводниковые датчики
Эти датчики применяются для измерения бездренажным методом абсолютного и перепадов давления, а также пульсаций статического давления на несущих поверхностях ЛА и в агрегатах силовых установок.
Датчики входят составной частью в группу тензорезисторных датчиков давления. Классификация тензорезисторных датчиков давления показана на рис. 2.
Рис. 2. Тензорезисторные датчики давления.
Датчики с приклеиваемыми тензорезисторами, конструктивно выполненными в виде монокристаллической структуры из четырех тензорезисторов, включаемых в схему измерительного моста, еще сохраняют прочные позиции. Однако класс точности их невысок, так как трудно получать безгистерезисные соединения, не имеющие остаточных деформаций. Поэтому в качестве упругих чувствительных элементов датчиков широко применяются интегральные структуры, т.е. тензорезисторы, имеющие атомарную связь с материалом мембраны и составляющие с ней единое целое. Наиболее распространены структуры кремний на кремнии (КНК–структуры) и кремний на сапфире (КНС–структуры). Тензорезисторы КНК–структуры образуются диффузией в поверхностный слой мембраны. При этом создается р–n-переход, изолирующий тензорезистор от подложки. В КНС–структурах тензорезисторы образуются из предварительно создаваемого эпитаксиального слоя кремния. Совершенная изоляция резисторов на сапфире обеспечивает повышенную термостойкость датчика.
Основные ограничения в использовании полупроводниковых датчиков связаны, в основном, с их значительными температурными погрешностями. В практике летных испытаний применяются чаще миниатюрные полупроводниковые датчики на КНК–структурах. В качестве структуры используется, например, интегральный чувствительный элемент давления ЧЭД–5; 0,5.
Конструкция датчика плоская, ее особенностью является консольное закрепление интегрального чувствительного элемента в корпусе, исключающее деформацию мембраны, в известных пределах, от действия влияющих величин. Мембрана датчика защищена от возможных ударов взвешенных в воздухе частиц перфорированным экраном, выполненным с корпусом за одно целое. Датчики термокомпенсированы. Электрическая схема датчика выполнена в виде равноплечевого измерительного моста с открытыми диагоналями. Конструкции датчиков, в зависимости от поставленных задач, выполнены в трех вариантах.
Датчик абсолютного давления имеет вакуумированный корпус. В некоторых датчиках переменного давления применен щелевой акустический демпфер, снимающий перегрузочное давление мембраны и препятствующий передаче переменной составляющей давления в корпус датчика.
Применяются датчики перепада давления, снабженные миниатюрной, выводной трубкой, соединяющей корпус датчика с автономным источником опорного давления.
Лекция 9.
Тема: ИЗМЕРЕНИЕ ПАРАМЕТРОВ И УСЛОВИЙ РАБОТЫ КОНСТРУКЦИИ