
- •Лекція №1
- •1.1 Вступ. Історія розвитку гдс. Вклад вітчизняної науки при створенні теоретичних та технічних основ каротажу
- •1.2 Основні напрямки застосування гдс при пошуках, розвідці і розробці корисних копалин, їх ефективність
- •1.3 Класифікація методів гдс за фізичними основами. Поняття про раціональний комплекс методів досліджень свердловин
- •Лекція №2
- •2.1 Конструкція свердловини
- •2.2 Категорії свердловин за призначенням
- •2.3 Характеристики об’єктів дослідження в свердловинах. Поняття про зону кольматації, промиту зону, зону проникнення, незатронуту зону
- •Лекція №3
- •3.1 Фізичні основи методів електричного каротажу
- •3.2 Класифікація зондів
- •3.3 Форми кривих для різних умов
- •3.4 Стандартний каротаж
- •3.5 Мікрокаротажне зондування Фізичні основи, апаратура, області застосування
- •3.7 Визначення коефіцієнта мікрозондів
- •Нахилометрія свердловин
- •Лекція №4
- •4.1 Фізична суть бокового каротажного зондування
- •4.2 Апаратура, технологія проведення досліджень
- •4.3 Умови ефективного застосування результатів бкз та задачі, які вирішуються
- •Лекція №5
- •5.1 Фізичні основи методів
- •5.2 Метод опору екранованого заземлення з автоматичним фокусуванням струму
- •Апаратура бк трьохелектродного зонда (абкт)
- •5.3 Форми кривих ефективного опору
- •5.4 Області застосування та задачі, що вирішуються
- •5.5 Мікробоковий каротаж
- •Лекція №6
- •6.1 Фізичні основи
- •6.2 Форми кривих і фактори, що впливають
- •6.3 Області застосування та задачі, які вирішуються за даними ік
- •6.4 Фізичні основи діелектричного каротажу
- •6.5 Області застосування діелектричного каротажу
- •Лекція №7
- •7.1 Природні потенціали в свердловині
- •7.2 Спосіб реєстрації потенціалів пс
- •7.3 Форми кривих пс
- •7.4 Задачі, які вирішуються за допомогою методу пс
- •7.5 Метод викликаної поляризації. Фізичні основи. Методика проведення досліджень. Задачі, які вирішується за даними методу вп Фізичні основи методу викликаної поляризації
- •Методика проведення досліджень
- •Задачі, які вирішується за даними методу вп
- •Лекція №8
- •13.1 Фізичні основи методів магнітного поля
- •13.2 Метод природного магнітного поля
- •13.3 Апаратура методу природного магнітного поля
- •13.4 Області застосування методу пмп
- •13.5 Метод магнітної сприйнятливості
- •13.6 Апаратура методу мс
- •13.7 Криві методу мс
- •13.8 Області застосування методу мс
- •13.9 Ядерно-магнітний каротаж
- •13.10 Апаратура ядерно-магнітного каротажу
- •13.11 Криві ямк
- •13.12 Області застосування ямк
- •Лекція №9
- •Радіоактивність, основні закони радіоактивного розпаду
- •Гамма-каротаж
- •Лічильники, які використовуються при вимірюванні радіоактивності
- •Способи еталонування апаратури
- •Криві гк
- •Задачі, які вирішуються за допомогою гк
- •Спектрометричний гамма-каротаж
- •Лекція №10
- •10.1 Взаємодія гамма квантів з речовиною
- •10.2 Фізичні основи ггк-г
- •10.4 Апаратура і методика проведення густинного гамма-гамма-каротажу
- •10.5 Гамма-гамма-каротаж селективний
- •10.6 Області застосування методів розсіяного гамма-випромінювання
- •Лекція №11
- •Взаємодія нейтронів з речовиною
- •Фізичні основи нейтронних методів:
- •Нейтронний гамма-каротаж
- •Нейтрон-нейтронний каротаж по теплових нейтронах
- •Нейтрон-нейтронний каротаж по надтеплових нейтронах
- •Задачі, які вирішуються за даними нгк, ннк-т, ннк-нт
- •Джерела швидких нейтронів
- •Вплив різних факторів на покази нейтронних методів
- •Імпульсний нейтрон-нейтронний каротаж
- •Задачі, які вирішуються за даними іннк
- •Лекція №12
- •12.1 Фізичні основи акустичних методів
- •12.2 Розповсюдження пружних хвиль у свердловині
- •12.3 Апаратура акустичного каротажу
- •12.4 Методика проведення вимірювань акустичного каротажу
- •12.5 Задачі акустичного каротажу
- •Лекція №13
- •13.1 Типи і основні вузли каротажних станцій-лабораторій
- •Лабораторія лкс-7-02
- •Будова та робота лабораторії
- •Пристрої та робота основних складових лабораторії
- •13.2 Каротажні лебідки, підйомники, їх конструкції. Каротажні: кабелі, датчики магнітних міток, натягу, блок-баланси, сельсини
- •Лекція №14
- •Області застосування методу природного теплового поля Землі та геологічні задачі, які розв’язуються за результатами даного методу.
- •5.3 Апаратура, обладнання та матеріали
- •Лекція №15
- •Інклінометрія
- •3.3 Апаратура, обладнання та матеріали
- •Кавернометрія
- •4.3 Апаратура, обладнання та матеріали
- •Лекція №16
- •Геохімічні дослідження у свердловинах
- •Газовий каротаж в процесі буріння
- •Апаратура та методика проведення газометрії свердловин в процесі буріння
- •Задачі газометрії свердловин підчас буріння
- •Газометрія свердловин після буріння
- •Механічний каротаж
- •Задачі, які вирішуються за допомогою комплексних геофізичних досліджень в процесі буріння
- •Припливометрія
- •Дебітометрія
- •Лекція №17
- •17.1 Метод термометрії
- •17.2 Гамма-гамма каротаж
- •17.3 Акустичний каротаж
- •Лекція №18 Дефектометрія свердловин. Індуктивний дефектомір обсадних труб. Гамма-гамма-товщиномір. Свердловинне акустичне телебачення. Акустичні сканери
- •18.1 Індуктивний дефектомір обсадних труб
- •18.2 Гамма-гамма-товщиномір
- •18.3 Свердловинне акустичне телебачення
- •Лекція №19
- •Визначення положення газорідинних і водо-нафтових контактів
- •Лекція №20
- •20.1 Перфорація
- •20.2 Торпедування
- •20.3 Інші види підривних робіт
- •20.4 Відбір зразків порід, проб пластових флюїдів та випробовування пластів
- •20.4.1 Відбір зразків порід
- •20.4.2 Відбір проб пластових флюїдів та випробовування пластів
- •Лекція №21
- •21.1 Основні правила техніки безпеки при проведенні геофізичних робіт у свердловинах
- •21.2 Електрометричні роботи
- •21.3 Радіометричні роботи
- •21.4 Прострілково-вибухові роботи
- •21.5 Промислова санітарія і протипожежні заходи
4.2 Апаратура, технологія проведення досліджень
Комплексна свердловинна малогабаритна апаратура КСП-М складається з глибинного приладу із багато-електродним зондом і наземної панелі. Криві УО записуються однополюсними зондами із загальним живлячим електродом A.
Живлення електроду A від наземного стабілізованого генератора УГ-1 (Рис. 5.3), а живлення ланок свердловинного приладу від випрямляча УВК-1. Зворотним живлячим електродом B служить броня кабелю. Різниці потенціалів, які знімаються з чотирьох пар вимірювальних електродів (M1N1, M2N2, M3N3, M4N4), що утворюють з електродом A чотири різних зонди УО, передаються на поверхню по лінії її зв’язку за допомогою частотно-модульованих коливань з основними частотами 7.8, 14, 25.7 та 45.6 кГц. Сигнал СП проходить по кабелю у вигляді струму, який повільно змінюється.
Перемикання зондів здійснюється перемикачем П з наземної панелі керування. Кожний із чотирьох каналів УО включає вхідний трансформатор (Тр1 – Тр4) і частотний перетворювач (ЧП1 –ЧП2), який складається з підсилювача та модулятора. Модульовані коливання надходять на суматор СУ і через фільтр Ф по кабелю через панель керування ПК попадають на вимірювальну панель частотної модуляції ВПЧМ, де вони розділяються за несучими частотами та направляються у відповідні чотири канали, після чого демодулюються та випрямляються фазочутливими детекторами. З виходу ВПЧМ сигнали у виді постійного струму, що повільно змінюється і амплітуда якого пропорційна вимірювальній величині УО, надходять на відповідні канали реєстратора.
За три спуск-підйоми апаратурою КСП-М записують криві СП, стандартного каротажу та повного бокового каротажного зондування. За перший цикл реєструються покази “стандарт-сигнал”, криві зондів A2.0M0.5N, A4.0M0.5N, A0.5M8.0N; за другий цикл – криві зондів A8.0M1.0N, N0.5M2.0A, A1.0M0.1N, A0.4M0.1N; за третій – крива СП. Багатоелектродний зонд монтується на відрізку кабелю КОБДТ-10 довжиною 30 м і містить електроди, які утворюють комплект зондів БКЗ і стандартного каротажу, а також електрод для запису кривої СП.
Апаратура КСП-М призначена для роботи з одножильним броньованим кабелем КОБДТ-10 довжиною до 10 км із середніми геофізичними лабораторіями, які укомплектовані чотирьохканальним реєстратором і уніфікованими блоками.
Масштаби запису кривих к вибирається таким, що можна було б за ними встановити опір з точністю до 5% від вимірювальної величини УО, а відхилення кривої к від нульової лінії повинно бути не менше 1 см. За можливістю при дослідженнях зондами БКЗ зберігається єдиний масштаб запису, який рівний масштабу стандартного зонда, наприклад 2.5 Ом·м/см. Масштаб глибини діаграм БКЗ береться, як правило, 1:200, рідше 1:500 і 1:50.
4.3 Умови ефективного застосування результатів бкз та задачі, які вирішуються
Метод бокового каротажного зондування ефективно використовується при дослідженні свердловин, які заповнені відносно слабомінералізованою рідиною.
Метод БКЗ використовується для дослідження розрізів свердловин з метою детального вивчення пластів і отримання їх кількісних характеристик. Переважно методом БКЗ досліджується продуктивна ділянка розрізу свердловини. У результаті інтерпретації даних БКЗ отримують значення питомого електричного опору пласта, яке близьке до дійсного значення п, а також параметри зони проникнення промивної рідини – зп, Dзп. За величинами п і зп, використовуючи петрофізичні зв’язки, виявляють у розрізі свердловини корисні копалини, оцінюють пористість, проникність колекторів, нафтогазонасиченність, нафтовіддачу порід.