- •Оглавление
- •2. Краткие сведения из теории вероятностей
- •3. Предварительная обработка экспериментальных
- •7. Компьютерные методы статистической обработки
- •Предисловие
- •1. Эксперимент как предмет исследования
- •1.1. Понятие эксперимента
- •1. Эксперимент как предмет исследования
- •1. Эксперимент как предмет исследования
- •1.2. Классификация видов экспериментальных исследований
- •1. Эксперимент как предмет исследования
- •1. Эксперимент как предмет исследования
- •1. Эксперимент как предмет исследования
- •1. Эксперимент как предмет исследования
- •1. Эксперимент как предмет исследования
- •1. Эксперимент как предмет исследования
- •Контрольные вопросы
- •2. Краткие сведения из теории вероятностей и математической статистики
- •2. Краткие сведения из теории вероятностей ...
- •2. Краткие сведения из теории вероятностей ...
- •2. Краткие сведения из теории вероятностей ...
- •2. Краткие сведения из теории вероятностей ...
- •2. Краткие сведения из теории вероятностей ...
- •2. Краткие сведения из теории вероятностей ...
- •2. Краткие сведения из теории вероятностей ...
- •2. Краткие сведения из теории вероятностей ...
- •2. Краткие сведения из теории вероятностей ...
- •2. Краткие сведения из теории вероятностей ...
- •2.2. Нормальный закон распределения
- •2. Краткие сведения из теории вероятностей …
- •2. Краткие сведения из теории вероятностей ...
- •2. Краткие сведения из теории вероятностей ...
- •2. Краткие сведения из теории вероятностей ...
- •2. Краткие сведения из теории вероятностей ...
- •2. Краткие сведения из теории вероятностей ...
- •2. Краткие сведения из теории вероятностей ...
- •2. Краткие сведения из теории вероятностей ...
- •Контрольные вопросы
- •3. Предварительная обработка экспериментальных данных
- •3.1. Вычисление параметров эмпирических распределений. Точечное оценивание
- •3.2. Оценивание с помощью доверительного интервала
- •3.2.1. Построение доверительного интервала для математического ожидания
- •3.2.2. Построение доверительного интервала для дисперсии
- •3.2.3. Определение необходимого количества опытов при построении интервальной оценки для математического ожидания
- •3.3. Статистические гипотезы
- •3.4. Отсев грубых погрешностей
- •3.4.1. Критерий н.В. Смирнова
- •3.4.2. Критерий Диксона
- •3.5. Сравнение двух рядов наблюдений
- •3.5.1. Сравнение двух дисперсий
- •3.5.2. Проверка однородности нескольких дисперсий
- •3.5.3. Проверка гипотез о числовых значениях математических ожиданий
- •3.6. Критерии согласия. Проверка гипотез о виде функции распределения
- •3.7. Преобразование распределений к нормальному
- •Контрольные вопросы
- •4. Анализ результатов пассивного эксперимента. Эмпирические зависимости
- •4.1. Характеристика видов связей между рядами наблюдений
- •4. Анализ результатов пассивного эксперимента...
- •4. Анализ результатов пассивного эксперимента…
- •4. Анализ результатов пассивного эксперимента…
- •4.2. Определение коэффициентов уравнения регрессии
- •4. Анализ результатов пассивного эксперимента...
- •4. Анализ результатов пассивного эксперимента…
- •4. Анализ результатов пассивного эксперимента
- •4. Анализ результатов пассивного эксперимента…
- •4.3. Определение тесноты связи между случайными величинами
- •4. Анализ результатов пассивного эксперимента...
- •4.4. Линейная регрессия от одного фактора
- •4. Анализ результатов пассивного эксперимента…
- •4. Анализ результатов пассивного эксперимента...
- •4. Анализ результатов пассивного эксперимента…
- •4.5. Регрессионный анализ
- •4. Анализ результатов пассивного эксперимента…
- •4. Анализ результатов пассивного эксперимента...
- •4.5.1. Проверка адекватности модели
- •4. Анализ результатов пассивного эксперимента...
- •4. Анализ результатов пассивного эксперимента…
- •4.5.2. Проверка значимости коэффициентов уравнения регрессии
- •4. Анализ результатов пассивного эксперимента…
- •4.6. Линейная множественная регрессия
- •4. Анализ результатов пассивного эксперимента…
- •4. Анализ результатов пассивного эксперимента…
- •4. Анализ результатов пассивного эксперимента…
- •4.7. Нелинейная регрессия
- •4. Анализ результатов пассивного эксперимента…
- •Контрольные вопросы
- •4. Анализ результатов пассивного эксперимента…
- •5. Оценка погрешностей результатов наблюдений
- •5.1. Оценка погрешностей определения величин функций
- •5. Оценка погрешностей результатов наблюдений
- •5.2. Обратная задача теории экспериментальных погрешностей
- •5. Оценка погрешностей результатов наблюдений
- •5. Оценка погрешностей результатов наблюдений
- •5.3.Определение наивыгоднейших условий эксперимента
- •5. Оценка погрешностей результатов наблюдений
- •Контрольные вопросы
- •6. Методы планирования экспериментов. Логические основы
- •6.1. Основные определения и понятия
- •6.2. Пример хорошего и плохого эксперимента
- •6.3. Планирование первого порядка
- •6.3.1. Выбор основных факторов и их уровней
- •6.3.2. Планирование эксперимента
- •6.3.3. Определение коэффициентов уравнения регрессии
- •6.3.4. Статистический анализ результатов эксперимента
- •6.3.5. Дробный факторный эксперимент
- •6.3.6. Разработка математической модели гидравлического режима методической печи
- •6.4. Планы второго порядка
- •6.4.1. Ортогональные планы второго порядка
- •6.4.2. Ротатабельные планы второго порядка
- •6.4.3. Исследование причин образования расслоений в горячекатаных листах
- •6.5. Планирование экспериментов при поиске оптимальных условий
- •6.5.1. Метод покоординатной оптимизации
- •6.5.2. Метод крутого восхождения
- •6.5.3. Симплексный метод планирования
- •Контрольные вопросы
- •7. Компьютерные методы статистической обработки результатов инженерного эксперимента
- •7.1. Общие замечания
- •7. Компьютерные методы статистической обработки …
- •7. Компьютерные методы статистической обработки …
- •7. Компьютерные методы статистической обработки …
- •7. Компьютерные методы статистической обработки …
- •7.2. Статистические функции Microsoft Excel
- •7. Компьютерные методы статистической обработки ...
- •7. Компьютерные методы статистической обработки …
- •7.3. Краткое описание системы statistica
- •7. Компьютерные методы статистической обработки …
- •7.3.1. Общая структура системы
- •7. Компьютерные методы статистической обработки ...
- •7. Компьютерные методы статистической обработки …
- •7.3.2. Возможные способы взаимодействия с системой
- •7. Компьютерные методы статистической обработки … 7.3.3. Ввод данных
- •7. Компьютерные методы статистической обработки ...
- •7.3.4. Вывод численных и текстовых результатов анализа
- •7.3.5. Статистические процедуры системы statistica
- •7. Компьютерные методы статистической обработки …
- •7. Компьютерные методы статистической обработки …
- •7.3.6. Структура диалога пользователя в системе statistica
- •7. Компьютерные методы статистической обработки ...
- •7.3.7. Примеры использования системы statistica
- •7. Компьютерные методы статистической обработки ...
- •7. Компьютерные методы статистической обработки …
- •7. Компьютерные методы статистической обработки …
- •7. Компьютерные методы статистической обработки …
- •V, Least Squares
- •7. Компьютерные методы статистической обработки …
- •7. Компьютерные методы статистической обработки …
- •7. Компьютерные методы статистической обработки … Контрольные вопросы
- •Методы планирования и обработки результатов инженерного эксперимента
4. Анализ результатов пассивного эксперимента…
у в интервале [xmin; xmax]- Искомая зависимость у =f(X) может быть найдена лишь в результате совместной обработки полученных значений X и у.
На рис. 4.1, б - это кривая зависимости, проходящая по центру полосы экспериментальных точек (математическому ожиданию), которые могут и не лежать на искомой кривой у =f(X), а занимают некоторую полосу вокруг нее. Эти отклонения вызваны погрешностями измерений, неполнотой модели и учитываемых факторов, случайным характером самих исследуемых процессов и другими причинами.
Анализ стохастических связей приводит к различным постановкам задач статистического исследования зависимостей, которые упрощенно можно классифицировать следующим образом:
задачи корреляционного анализа - задачи исследования наличия взаимосвязей между отдельными группами переменных ;
задачи регрессионного анализа - задачи, связанные с установлением аналитических зависимостей между переменным у и одним или несколькими переменными x-i, х2, ..., Xi, ..., xk, которые носят количественный характер;
задачи дисперсионного анализа - задачи, в которых переменные х-i, х2, ..., Xi, ..., xk имеют качественный характер, а исследуется и устанавливается степень их влияния на переменное у.
Стохастические зависимости характеризуются формой, теснотой связи и численными значениями коэффициентов уравнения регрессии.
Форма связи устанавливает вид функциональной зависимости y=f(X) и характеризуется уравнением регрессии. Если уравнение связи линейное, то имеем линейную многомерную регрессию, в этом случае зависимость у от X описывается линейной зависимостью в k-мерном пространстве:
к
у = Ь0+^Ь:х:, (4.2)
/=1
где bo, ..., bj, ..., bk - коэффициенты уравнения. Для пояснения существа используемых методов ограничимся сначала случаем, когда х - скаляр. В общем
119
4. АНАЛИЗ РЕЗУЛЬТАТОВ ПАССИВНОГО ЭКСПЕРИМЕНТА…
случае виды функциональных зависимостей в технике достаточно многообразны: показательные у = brjx 1 , логарифмические y = t>olg(x) и т.д.
Заметим, что задача выбора вида функциональной зависимости - задача неформализуемая, так как одна и та же кривая на данном участке примерно с одинаковой точностью может быть описана самыми различными аналитическими выражениями. Отсюда следует важный практический вывод. Даже в наш век компьютеров принятие решения о выборе той или иной математической модели остается за исследователем. Только экспериментатор знает, для чего будет в дальнейшем использоваться эта модель, на основе каких понятий будут интерпретироваться ее параметры.
Крайне желательно при обработке результатов эксперимента вид функции y=f(X) выбирать, исходя из условия ее соответствия физической природе
изучаемых явлений или имеющимся представлениям об особенностях поведения исследуемой величины. К сожалению, такая возможность не всегда имеется, так как эксперименты чаще всего проводятся для исследования недостаточно или неполно изученных явлений.
от одного фактора при заранее неизвестном виде функции отклика для приближенного определения вида уравнения регрессии полезно предварительно построить эмпирическую линию регрессии (рис.4.2). Для этого весь диапазон
изменения х разбивают на равные ин-
Рис.4.2. К построению
тервалы Ах. Все точки, попавшие в дан-
эмпирической линии регрессии
ный интервал Axj, относят к его середине ^j . Для этого подсчитывают частные
средние для каждого интервала:
П;
Eyji
у; = ——. (4.3)
J п;
120