Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по аналитической геометрии.doc
Скачиваний:
12
Добавлен:
07.09.2019
Размер:
4.73 Mб
Скачать

Свойства координат векторов

10. Нулевой вектор в любом базисе имеет нулевые координаты: (0;0;0).

□ Разложим по векторам базиса , , :

.

Следовательно, (0;0;0) , , . ■

20. Если , , - базис пространства V, то (1;0;0), (0;1;0), (0;0;1).

(1;0;0);

(0;1;0);

(0;0;1). ■

30. Если ( ; ; ), в базисе , , , а , то

в базисе , , (координаты линейной комбинации векторов равны линейным комбинациям их соответствующих координат).

□ По определению координат вектора

, .

Тогда , .

Сложим почленно эти равенства и воспользуемся свойствами сложения векторов и умножения вектора на число:

.

По определению координат вектора

. ■

Из свойства 30 получаем следствия:

Следствие 1. Каждая координата суммы (разности) двух векторов равна сумме (разности) соответствующих координат этих векторов.

Следствие 2. При умножении вектора на число каждая его координата умножается на это число.

□ Чтобы доказать справедливость следствия 1, надо в свойстве 30 взять сначала ==1, а затем =1, =-1. Для доказательства следствия 2 полагаем =0. ■

40. Векторы равны тогда и только тогда, когда равны их соответствующие координаты: , , .

50. Пусть ( ; ; ), , и , i=1, 2, 3. Векторы и коллинеарны тогда и только тогда, когда их соответствующие координаты пропорциональны:

|| .

Пусть . Тогда

|| и .

Если же , то

|| , а и - любые.

Частным случаем произвольного базиса является ортонормированный базис. Его удобно использовать при решении метрических задач (т.е. задач, связанных с вычислением длин отрезков (векторов) и величин углов).

Б азис , , называется ортонормированным, если его векторы удовлетворяют двум условиям:

1) ;

2

Е2

Рис. 8

) если , , (рис. 8), то углы , и - прямые.

Замечание. Множество всех векторов, параллельных данной плоскости (или лежащих в ней), образует двумерное векторное пространство, т.к. любой его базис состоит из двух неколлинеарных векторов. Поэтому любой вектор этого пространства в таком базисе имеет две, а не три координаты: . Ортонормированный базис выглядит так: , (рис. 9).

Задания для самостоятельной работы

1. Будут ли векторы и 3 образовывать базис двумерного пространства и почему?

2. Будут ли векторы , и образовывать базис трехмерного пространства и почему?

3. Какие координаты имеет вектор в базисе , , ?

4. Сформулируйте свойство 50 координат векторов для следующих случаев:

а) ; б) ; в) ; г) .

Лекция 4 Нелинейные операции над векторами

§6. Скалярное произведение двух векторов

Углом между ненулевыми векторами и называется угол между лучами и , сонаправленными с векторами и соответственно и исходящими из одной точки О (рис. 10).

О бозначение: .

Два ненулевых вектора и называются взаимно перпендикулярными (ортогональными), если .

Обозначение: .

Если хотя бы один из векторов нулевой, то считают, что .

Итак, нулевой вектор ортогонален любому вектору.

Угол между двумя векторами и находится в следующих пределах:

.

Понятие угла между векторами используется при определении понятия скалярного произведения.

Скалярным произведением двух векторов называется число (скаляр), равное произведению их длин на косинус угла между ними. Обозначение: или .

.

Скалярным квадратом вектора называется число, равное скалярному произведению . Обозначение: 2.

Скалярное умножение векторов не является линейной операцией над векторами.

Скалярное умножение векторов обладает геометрическими и алгебраическими свойствами. В геометрических свойствах фигурируют геометрические величины (длина, угол, перпендикулярность, проекция и т.д.), алгебраические свойства – это свойства, аналогичные свойствам сложения и умножения действительных чисел.