Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по аналитической геометрии.doc
Скачиваний:
12
Добавлен:
07.09.2019
Размер:
4.73 Mб
Скачать

§3. Умножение вектора на число

Рассмотрим еще одну линейную операцию над векторами – умножение вектора на число. Результатом этой операции является произведение вектора на число.

Произведением вектора на действительное число называется вектор , обозначаемый через и удовлетворяющий двум условиям:

  1. его длина ;

  2. если  0, то ; если <0, то .

Алгоритм построения произведения вектора число  таков.

Берем произвольную точку М. Проводим луч , сонаправленный с вектором , если  0, и противоположно направленный с вектором , если <0. На луче от начала М откладываем отрезок MP, длина которого в раз больше длины вектора . Вектор - искомый вектор .

Продемонстрируем этот алгоритм на конкретном примере. Построим вектор , если - данный вектор.

Возьмем произвольную точку А. Так как <0, то проводим луч (рис. 7). На луче строим такую точку С, что . Тогда - искомый вектор.

Свойства умножения вектора на число

10. и .

20. .

30. .

40. .

Теорема 1 (о коллинеарных векторах). Пусть . Векторы и коллинеарны тогда и только тогда, когда существует такое действительное число , что .

Т еорема 2 (о компланарных векторах). Пусть || . Векторы компланарны тогда и только тогда, когда существуют такие действительные числа  и , что .

Задания для самостоятельной работы

1. Начертите произвольный вектор . Постройте векторы .

2. Даны векторы и . Постройте векторы .

3. Упростите выражение .

4. Будут ли векторы и коллинеарны и почему, если ?

5. Будут ли векторы и компланарны и почему?

Лекция 2

Линейная зависимость векторов

§4. Линейная зависимость векторов и ее свойства

Линейной комбинацией векторов называется вектор , где .

Примеры линейных комбинаций:

1. Вектор есть линейная комбинация векторов (здесь ).

2. Вектор есть линейная комбинация векторов (здесь ).

Система векторов называется линейно зависимой, если существуют такие действительные числа , не все равные 0 одновременно, что выполняется векторное равенство:

.

Если равенство выполняется только при , то система векторов называется линейно независимой.

Примеры

1. Система векторов линейно зависима, т.к. если возьмем , то получим, что , т.е. существуют такие действительные числа , не все равные 0 одновременно ( ), что выполняется равенство .

2. Система двух неколлинеарных векторов и линейно независима, т.к. сумма двух неколлинеарных векторов и равна нулевому вектору только при .

Свойства линейно зависимой системы векторов

10. Система, состоящая из одного вектора, линейно зависима тогда и только тогда, когда этот вектор нулевой.

□ Пусть система, состоящая из одного вектора , линейно зависима. Докажем, что вектор .

Из определения линейно зависимой системы следует, что существует такое, что . Так как первый сомножитель в левой части не равен 0, то второй сомножитель должен быть нулевым вектором, т.е. .

Пусть, обратно, . Докажем, что система, состоящая из одного вектора , линейно зависима. Левую часть равенства можно записать в виде , следовательно, , т.е. существует такое, что . По определению линейно зависимой системы векторов система линейно зависима. ■

20. При n>1 система векторов линейно зависима тогда и только тогда, когда хотя бы один из них является линейной комбинацией остальных векторов этой системы.

□ Пусть система векторов линейно зависима. Докажем, что один из ее векторов является линейной комбинацией остальных векторов этой системы.

По определению линейно зависимой системы векторов существуют числа , не все равные 0 одновременно, такие, что

.

Пусть для определенности , где к – одно из чисел 1, 2, ...,n. Перенесем все слагаемые, кроме , из левой части равенства в правую и разделим обе части равенства на :

.

Следовательно, вектор есть линейная комбинация векторов .

Пусть теперь один из векторов системы , например, , является линейной комбинацией векторов . Докажем, что система векторов линейно зависима.

По условию . Перенесем в правую часть и поставим это слагаемое между и :

.

Таким образом, существуют такие числа , не все равные 0 одновременно, что выполняется векторное равенство

.

Следовательно, система векторов линейно зависима. ■

30. Если часть данной системы векторов линейно зависима, то и вся система линейно зависима.

□ Пусть дана система векторов и известно, что ее подсистема <n, линейно зависима. Тогда существуют такие числа , причем , что .

Тогда ,

т.е. нашлись числа , причем , следовательно, система линейно зависима. ■

40. Система линейно независимых векторов не содержит нулевого вектора.

□ Пусть система линейно независима. Предположим, что она содержит . По свойству 10 система линейно зависима. Тогда по свойству 30 вся система линейно зависима. Получили противоречие с условием. ■

50. Если система векторов линейно независима, то любая ее часть линейно независима.

□ Предположим, что существует часть данной системы, являющаяся линейно зависимой. Тогда по свойству 30 вся данная система должна быть линейно зависимой. Получили противоречие с условием. ■

60. Система векторов линейно зависима тогда и только тогда, когда || .

□ Пусть система векторов линейно зависима. Тогда по свойству 20 или , или . По теореме о коллинеарных векторах || .

Пусть || . Если один из векторов нулевой, например, , то по свойству 40 система , линейно зависима. Если , то по теореме о коллинеарных векторах . Так как , то система векторов линейно зависима. ■

Аналогично, пользуясь теоремой о компланарных векторах, можно доказать свойство

70. Система векторов линейно зависима тогда и только тогда, когда эти векторы компланарны.