
- •Список рекомендуемой литературы
- •Элементы векторной алгебры Лекция 1 Векторы. Линейные операции над векторами
- •§1. Понятие вектора
- •Задания для самостоятельной работы
- •§2. Сложение и вычитание векторов
- •Правило треугольника
- •Правило параллелограмма
- •Правило многоугольника
- •Правило построения разности двух векторов
- •Задания для самостоятельной работы
- •§3. Умножение вектора на число
- •§4. Линейная зависимость векторов и ее свойства
- •Примеры
- •Свойства линейно зависимой системы векторов
- •Задания для самостоятельной работы
- •Лекция 3 Базис. Координаты вектора
- •§5. Базис. Координаты вектора в данном базисе
- •И их свойства
- •Свойства координат векторов
- •Задания для самостоятельной работы
- •Лекция 4 Нелинейные операции над векторами
- •§6. Скалярное произведение двух векторов
- •Геометрические свойства скалярного умножения векторов
- •Алгебраические свойства скалярного умножения векторов
- •Приложение скалярного произведения векторов к доказательству теорем
- •Задания для самостоятельной работы
- •Лекция 5 Нелинейные операции над векторами
- •§7. Понятие об ориентации пространства и плоскости
- •Задания для самостоятельной работы
- •§8. Векторное произведение двух векторов
- •Геометрические свойства векторного умножения векторов
- •Алгебраические свойства векторного умножения векторов
- •Применение векторного произведения
- •Задания для самостоятельной работы
- •§9. Смешанное произведение трех векторов
- •Алгебраические свойства смешанного умножения векторов
- •Применение смешанного произведения трех векторов
- •§10. Понятие аффинной и прямоугольной декартовой
- •Задания для самостоятельной работы
- •§11. Основные аффинные и метрические задачи
- •Основные аффинные задачи
- •Основная метрическая задача
- •Задания для самостоятельной работы
- •Лекция 8 Формулы преобразования координат
- •§12. Преобразование аффинной системы координат
- •Частные случаи преобразования аффинной системы координат
- •Задания для самостоятельной работы
- •§13. Понятие направленного угла между векторами. Преобразование прямоугольной системы координат
- •Частные случаи преобразования прямоугольной системы координат
- •Задания для самостоятельной работы
- •§14. Полярные координаты
- •Задания для самостоятельной работы
- •Прямая линия на плоскости Лекция 9 Прямая в аффинной системе координат
- •§15. Различные уравнения прямой
- •Задания для самостоятельной работы
- •§16. Общее уравнение прямой и его частные случаи
- •Частные случаи общего уравнения прямой
- •Задания для самостоятельной работы
- •§17. Основные аффинные задачи, связанные с прямой на плоскости (обзор)
- •Задания для самостоятельной работы
- •§18. Уравнение прямой, заданной точкой и
- •Задания для самостоятельной работы
- •§19. Основные метрические задачи, связанные с прямой на плоскости
- •§20. Различные уравнения плоскости
- •Задания для самостоятельной работы
- •§21. Общее уравнение плоскости
- •Задания для самостоятельной работы
- •§22. Основные аффинные задачи, связанные с плоскостью (обзор)
- •Задания для самостоятельной работы
- •Лекция 12 Плоскость в прямоугольной системе координат
- •§23. Основные метрические задачи, связанные с плоскостью
- •Задания для самостоятельной работы
- •Лекция 13 Прямая в пространстве. Различные задачи на прямые и плоскости в пространстве
- •§24. Различные уравнения прямой в пространстве
- •Задания для самостоятельной работы
- •§25. Основные аффинные задачи на прямые и плоскости
- •Задания для самостоятельной работы
- •§26. Основные метрические задачи на прямые и плоскости в пространстве
- •Задания для самостоятельной работы
Свойства координат векторов
10. Нулевой вектор в любом базисе имеет нулевые координаты: (0;0;0).
□ Разложим по векторам базиса , , :
.
Следовательно, (0;0;0) , , . ■
20. Если , , - базис пространства V, то (1;0;0), (0;1;0), (0;0;1).
□
(1;0;0);
(0;1;0);
(0;0;1).
■
30.
Если
(
;
;
),
в базисе
,
,
,
а
,
то
в базисе , , (координаты линейной комбинации векторов равны линейным комбинациям их соответствующих координат).
□ По определению координат вектора
,
.
Тогда
,
.
Сложим почленно эти равенства и воспользуемся свойствами сложения векторов и умножения вектора на число:
.
По определению координат вектора
.
■
Из свойства 30 получаем следствия:
Следствие 1. Каждая координата суммы (разности) двух векторов равна сумме (разности) соответствующих координат этих векторов.
Следствие 2. При умножении вектора на число каждая его координата умножается на это число.
□ Чтобы доказать справедливость следствия 1, надо в свойстве 30 взять сначала ==1, а затем =1, =-1. Для доказательства следствия 2 полагаем =0. ■
40.
Векторы равны тогда и только тогда,
когда равны их соответствующие координаты:
,
,
.
50.
Пусть
(
;
;
),
,
и
,
i=1,
2, 3. Векторы
и
коллинеарны тогда и только тогда, когда
их соответствующие координаты
пропорциональны:
||
.
Пусть
.
Тогда
||
и
.
Если же
,
то
||
,
а
и
- любые.
Частным случаем произвольного базиса является ортонормированный базис. Его удобно использовать при решении метрических задач (т.е. задач, связанных с вычислением длин отрезков (векторов) и величин углов).
Б
азис
,
,
называется ортонормированным,
если его векторы удовлетворяют двум
условиям:
1)
;
2
Е2
Рис. 8
,
,
(рис. 8), то углы
,
и
- прямые.
Замечание.
Множество всех векторов, параллельных
данной плоскости (или лежащих в ней),
образует двумерное векторное пространство,
т.к. любой его базис состоит из двух
неколлинеарных векторов. Поэтому любой
вектор этого пространства в таком базисе
имеет две, а не три координаты:
.
Ортонормированный базис выглядит так:
,
(рис. 9).
Задания для самостоятельной работы
1. Будут ли векторы и 3 образовывать базис двумерного пространства и почему?
2. Будут ли векторы
,
и
образовывать базис трехмерного
пространства и почему?
3. Какие координаты имеет вектор в базисе , , ?
4. Сформулируйте свойство 50 координат векторов для следующих случаев:
а)
;
б)
;
в)
;
г)
.
Лекция 4 Нелинейные операции над векторами
§6. Скалярное произведение двух векторов
Углом между
ненулевыми векторами
и
называется угол между лучами
и
,
сонаправленными с векторами
и
соответственно и исходящими из одной
точки О
(рис. 10).
О
бозначение:
.
Два ненулевых
вектора
и
называются взаимно
перпендикулярными (ортогональными),
если
.
Обозначение:
.
Если хотя бы один
из векторов нулевой, то считают, что
.
Итак, нулевой вектор ортогонален любому вектору.
Угол между двумя векторами и находится в следующих пределах:
.
Понятие угла между векторами используется при определении понятия скалярного произведения.
Скалярным
произведением
двух
векторов называется число (скаляр),
равное произведению их длин на косинус
угла между ними. Обозначение:
или
.
.
Скалярным
квадратом вектора
называется число, равное скалярному
произведению
.
Обозначение:
2.
Скалярное умножение векторов не является линейной операцией над векторами.
Скалярное умножение векторов обладает геометрическими и алгебраическими свойствами. В геометрических свойствах фигурируют геометрические величины (длина, угол, перпендикулярность, проекция и т.д.), алгебраические свойства – это свойства, аналогичные свойствам сложения и умножения действительных чисел.