
- •Коллоквиум по ла
- •Определение линейного пространства и простейшие следствия из аксиом
- •Примеры линейных пространств
- •Простейшие следствия из аксиом.
- •Вопрос 2 Линейная зависимость и независимость элементов линейного пространства
- •Примеры линейной зависимости и независимости
- •Простейшие свойства линейной зависимости
- •Вопрос 3 Базис и координаты в линейном пространстве
- •Примеры
- •Свойства координат векторов
- •Вопрос 4 Матричный критерий линейной зависимости и независимости
- •Вопрос 5 Размерность линейного пространства
- •Простейшие следствия из аксиом
- •Вопрос 7
- •Свойства скалярного произведения
- •Свойства расстояния
- •Вопрос 8 Подпространства линейного пространства
- •Вопрос 9 Линейные оболочки
- •Вопрос 10
- •Вопрос 11
- •Сумма и пересечение подпространств линейного пространства
- •Вопрос 12
- •Вопрос 13
- •Вопрос 14
- •Вопрос 15
- •Понятие отображения
- •Вопрос 16
- •Примеры линейных операторов
- •Простейшие свойства линейного оператора
- •Вопрос 17
- •Примеры
- •Связь координат вектора с координатами его образа
- •Вопрос 18
- •Вопрос 19
- •Вопрос 20
- •Вопрос 21
- •Вопрос 22
- •Вопрос 23
- •Свойства изоморфизма
- •Вопрос 24
- •Вопрос 25
- •Вопрос 26
- •Вопрос 27
- •Свойства собственных векторов
- •Вопрос 28
- •Правило нахождения собственных векторов
- •Вопрос 29
- •Вопрос 30
- •Вопрос 31
- •Вопрос 32
- •Правило нахождения присоединенных векторов
- •Таким образом, имеем единственное собственное значение, кратность которого равна 3. Определим количество собственных и присоединенных векторов.
Простейшие следствия из аксиом
1°.
►
:
.
С другой стороны,
[1*] =
На основании второй
аксиомы получаем требуемое.◄
2°.
►Если
содержит одну точку, то утверждение
очевидно. Если же не одну, то
◄
3°.
Но и
.
Поэтому на основании второй аксиомы
получаем
,
что равносильно доказываемому утверждению.
◄
Если V
– n-мерное линейное
пространство, то связанное с ним аффинное
пространство тоже называется n-мерным
и обозначается
.
Системой координат
в аффинном пространстве
называется совокупность точки
– начала
координат, и базиса линейного пространства
.
Пусть
в пространстве
задана система координат
.
(3.34)
Тогда
каждой точке
соответствует единственный вектор
,
который называется радиусом
вектором
точки М.
Координатами точки М
в системе координат (3.34) называются
координаты ее радиуса вектора в базисе
.
Выберем в две произвольные точки М и N. Имеем
.
(3.35)
Так как координаты точки совпадают с координатами ее радиуса вектора, то из (3.35) получаем вывод, который звучит так же, как известное школьное утверждение: чтобы найти координаты вектора, следует от координат его конца отнять соответствующие координаты начала.
Вопрос 7
как пример аффинного, евклидова и метрического пространств
Важнейшим примером аффинного пространства является пространство . Положим
,
.
Для
любых
и
определим операцию
.
Проверим выполнение аксиом:
;
положим
.
Тогда
Предположим, что
существует вектор
такой, что
.
Пусть
.
Значит,
.
Так как
,
то
и поэтому
.
Следовательно,
–
противоречие.
Таким образом, пространство с введенной в нем операцией откладывания вектора от точки становится n-мерным аффинным или точечным пространством. Упорядоченные наборы из чисел в зависимости от контекста рассматриваются либо как векторы, либо как точки, а операция складывания упорядоченных наборов, опять же в зависимости от контекста, рассматривается либо как сложение векторов, либо как откладывание вектора от точки.
В качестве системы координат в выбирают, как правило, следующую:
Эта система координат удобна тем, что в ней координаты точек и векторов совпадают с упорядоченными наборами, изображающими эти точки или векторы.
Введем в
еще одну операцию. Скалярным
произведением
векторов
и
пространства
назовем число
.
Свойства скалярного произведения
1.
2.
3.
4.
причем
Свойства 1 – 4 вы легко докажете в качестве упражнения исходя из определения скалярного произведения в .
Пространство с введенной в нем операцией скалярного произведения называется евклидовым пространством (подробно категорию евклидовых пространств мы будем изучать в шестой главе).
Из свойства 4
скалярного
произведения видно,
что для
любого вектора
существует
.
Это позволяет ввести в
понятие длины вектора.
Длиной
вектора
называется число
.
Очевидно, если
,
то
,
т. е., как и в школьной математике, длина
вектора равна корню квадратному из
суммы квадратов его координат.
Приведем без доказательства еще два свойства скалярного произведения (доказывать их будем в 6-й главе).
Неравенство Коши – Буняковского:
,
или
;
неравенство треугольника:
,
или
.
Из неравенства
Коши – Буняковского
вытекает, что для всех ненулевых векторов
пространства
выполняется неравенство
,
что дает возможность ввести понятие
угла между векторами.
Углом
между ненулевыми векторами
и
пространства
называется угол
такой, что
Введем еще в понятие расстояния между точками.
Расстоянием
между точками М
и N
в пространстве
называется число
.
Если
,
а
,
то
.
Таким образом, как и в школьной математике, расстояние между двумя точками в пространстве равно корню квадратному из суммы квадратов разностей их соответствующих координат.