Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции ЭиЭ.doc
Скачиваний:
75
Добавлен:
31.08.2019
Размер:
7.39 Mб
Скачать

8.3 Операторный метод расчета переходных процессов в линейных электрических цепях

Классический метод расчета обладает несомненными достоинствами, обусловленными физической наглядностью связей между величинами, которые выражаются дифференциальными уравнениями Кирхгофа, и сравнительной простотой их совместного решения. Часто, однако, задачи при решении классическим методом приводят к громоздким выкладкам, связанным, главным образом, с отысканием постоянных интегрирования, причем, эта процедура усложняется с ростом порядка цепи.

Отмеченные недостатки отсутствуют при применении операторного метода, в соответствии с которым уравнения переходного процесса в линейных цепях, представляющие собой линейные дифференциальные уравнения с постоянными коэффициентами, можно интегрировать операторным методом, основанном на преобразовании Лапласа.

Идея операторного метода заключается в замене вещественной переменной t комплексной переменной , осуществляемой в соответствии с функциональным преобразованием Лапласа. При этом каждой временной функции , называемой оригиналом (прообразом), ставится в соответствие функция , именуемая изображением (образом). Эта операция записывается f(t) = F(p). В результате такой замены система дифференциальных уравнений для оригиналов преобразуется в систему алгебраических уравнений для их изображений. В результате решения этой системы определяют изображение искомой величины, а на заключительном этапе переходят к физически понятной функции – оригиналу .

Подобный прием применялся при анализе стационарного решения цепей символическим методом. Однако в то время, как символический метод можно применять лишь к гармоническим функциям, операторный метод обладает значительно большей общностью и применим к широкому классу функций.

8.3.1 Преобразование Лапласа. Основные теоремы операторного метода

. (8.27)

Функция (8.27) называется интегралом Лапласа, который ставит в соответствие оригиналу f(t) операторное изображение F(p), т.е. f(t) = F(p).

Поскольку это несобственный интеграл, то надо оговорить условия его сходимости:

  • функция f(t) должна отвечать условиям Дирихле;

  • функция f(t) ограничена, т.е. при она конечна или если и растет по модулю, то не быстрее некоторой экспоненциальной функции , где A и  – положительные числа, т.е. .

В этом случае интеграл Лапласа сходится, т.е. имеет конечное значение при условии, что .

Итак, всегда можно выбрать достаточно большое , не уточняя какое именно, так, что F(p) в полуплоскости является однозначной функцией, т.е. интеграл Лапласа существует в области .

Основным достоинством преобразования Лапласа является его простая связь с частотным спектром функции f(t), широко используемом в теории и современной технике. В преобразовании Лапласа обычно подразумевают, что интервал интегрирования начинается с момента возмущения t = 0+, так что оно не отражает особенностей функции в точке t = 0.

Преобразование Лапласа может учитывать изменение физической величины в точке t = 0, если его представить в форме

. (8.28)

Выбор нижнего предела удобен, т.к. при этом учитываются особенности изменения воздействия и реакции в t = 0, когда они содержат импульсную составляющую, а также при использовании начальных условий (0), которые задаются формулировкой задачи.