Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции ЭиЭ.doc
Скачиваний:
75
Добавлен:
31.08.2019
Размер:
7.39 Mб
Скачать

4.2. Классический метод расчёта переходных процессов

Классический метод расчета переходных процессов основан на составлении и последующем решении (интегрировании) дифференциальных уравнений, составленных по законам Кирхгофа и связывающих искомые токи и напряжения послекоммутационной цепи и заданные воздействующие функции (источники электрической энергии. Преобразуя систему уравнений, можно вывести итоговое дифференциальное уравнение относительно какой-либо одной переменной величины x(t):

. (8.2)

Здесь n – порядок дифференциального уравнения, он же – порядок цепи, коэффициенты ak > 0 и определяются параметрами пассивных элементов R, L, C цепи, а правая часть является функцией задающих воздействий.

В соответствии с классической теорией дифференциальных уравнений полное решение неоднородного дифференциального уравнения находится в виде суммы частного решения неоднородного дифференциального уравнения и общего решения однородного дифференциального уравнения:

. (8.3)

Частное решение полностью определяется видом правой части f(t) дифференциального уравнения. В электротехнических задачах правая часть зависит от воздействующих источников электрической энергии, поэтому вид обуславливается (принуждается) источниками электрической энергии и называется принужденной составляющей .

Общее решение однородного дифференциального уравнения зависит от корней характеристического уравнения, которые определяются коэффициентами дифференциального уравнения, и не зависит от правой части. В прикладных задачах электротехники не зависит (свободно) от воздействующих источников и по этой причине называется свободной составляющей и полностью определяется параметрами пассивных элементов цепи, а физически процессом перераспределения запасов энергии электрического и магнитного полей в реактивных элементах цепи.

Таким образом, любая искомая величина в переходном режиме соответствует выражению (8.3). Свободную составляющую переходного процесса ищут в виде

, (8.4)

где n – порядок цепи, совпадающий с порядком дифференциального уравнения;

pk – корни характеристического уравнения (собственные числа цепи);

Ak – постоянные интегрирования.

Собственные числа линейных цепей либо действительные отрицательные, либо комплексные с отрицательными вещественными частями (т.е. находятся в левой полуплоскости комплексных чисел). Поэтому носит преходящий (асимптотически затухающий до нуля) характер.

В искомом решении надо уметь определять величины , n, pk, Ak.

4.2.1. Определение принужденной составляющей

Уравнение (4.3) при принимает вид , т.к. затухает до пренебрежимо малых размеров. Эти соображения позволяют утверждать: принужденная составляющая переходного процесса совпадает с соответствующей величиной в послекоммутационном установившемся режиме и может быть получена изученными ранее методами.

Электрическая цепь для расчета принужденных составляющих от источников постоянных воздействий должна быть чисто резистивной (индуктивности заменяются короткозамкнутыми участками, а емкости – разомкнутыми). При наличии источников с гармоническими воздействиями расчет принужденных составляющих ведется символическим методом.