Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции ЭиЭ.doc
Скачиваний:
75
Добавлен:
31.08.2019
Размер:
7.39 Mб
Скачать

8.2.4. Определение постоянных интегрирования

Как известно, постоянные интегрирования определяются из начальных условий, каковыми являются значения искомой функции и ее производных по (n – 1)-ую включительно в начальный момент времени 0+ («справа»). В отличие от чисто математических задач, где эти условия задаются в качестве исходных данных непосредственно, при анализе переходных процессов задаются начальные условия «слева» в момент = 0, предшествующий коммутации (чаще всего они формулируются самой постановкой задачи и легко определяются из расчета докоммутационного режима). Нахождение начальных условий «справа» по известным значениям начальных условий «слева» – ключевой момент в расчете переходных процессов.

Опишем процедуру отыскания начальных условий в цепи n-го порядка

  1. для послекоммутационной схемы ( ) составляют систему уравнений для мгновенных значений токов и напряжений по законам Кирхгофа, дополняют эту систему компонентными уравнениями типа для емкости;

  2. рассматривают эту систему уравнений в момент t = 0+ с учетом независимых начальных условий, которые по правилам коммутации берутся равными начальным условиям «слева», в результате определяются зависимые начальные условия, в том числе значения первых производных от индуктивных токов и емкостных напряжений;

  3. для отыскания значений первых производных от зависимых электрических величин и вторых производных от независимых электрических величин необходимо систему уравнений из п. 1 продифференцировать и рассмотреть ее в момент t = 0+ с учетом информации, полученной в п. 2;

  4. процедура дифференцирования продолжается до тех пор, пока не будет найдена (n – 1)-ая производная искомой функции в 0+.

Система уравнений для определения постоянных интегрирования имеет следующий вид:

(8.9)

Здесь для определенности полагаем все корни pk вещественными разными числами. Кроме того, следует учитывать, что при наличии в цепи только источников постоянных воздействий значение производных от принужденной составляющей переходного процесса равны нулю.

8.2.5 Переходные процессы в цепях первого порядка

Рассмотрим примеры расчета переходных процессов в неразветвленных электрических цепях, с достаточной степенью наглядности иллюстрирующие физические явления, происходящие в них в переходных режимах.

8.2.5.1 Разряд заряженной ёмкости через сопротивление r

1. Запишем правило коммутации для цепи на рис. 8.5:

.

2. Составим дифференциальное уравнение цепи:

;

.

Характеристическое уравнение первого порядка:

Рис. 8.5 ,

корень которого .

3. Полное решение дифференциального уравнения:

.

Поскольку уравнение имеет первый порядок, свободная составляющая имеет одну экспоненту

.

4. Определим принужденную составляющую .

5. Для определения постоянной интегрирования A запишем полное решение для момента t = 0+

.

Применив правило коммутации, получим окончательное решение

.

Ток в цепи определяется с помощью дифференциального закона Ома

,

, .

Итак, имеем две экспоненты, описывающие изменения и . Графики изменения и представлены на рис. 8.6. Напряжение на конденсаторе непрерывно в момент коммутации и уменьшается по экспоненциальному закону от начального значения U0. Знак «минус» в выражении для тока говорит о том, что ток при разряде конденсатора направлен противоположно току при его заряде. В начальный момент значение тока максимально, его спад связан с уменьшением напряжения на элементах цепи. Ток на ёмкости меняется скачком.

Введём величину, характеризующую скорость изменения электрической величины в переходном режиме, называемую постоянная времени ().

Величина показывает, за какой промежуток времени свободная составляющая переходного процесса уменьшается в раз.

Чем больше , тем медленнее переходный процесс, тем больше . Хотя полученные выше выражения определяют бесконечную длительность переходного процесса – свободные составляющие лишь асимптотически стремятся к нулю – практически можно считать, что переходный процесс заканчивается за время, равное .

Рис. 8.6

П остоянную времени можно графически определить по длине подкасательной, проведённой в любой точке свободной составляющей переходного процесса (рис. 8.7).

Постоянная времени измеряется в секундах и для цепей первого порядка связана с корнем характеристического уравнения

. (4.10)

Рассмотрим энергетические соотношения, описывающие работу цепи после коммутации.

Рис. 8.7

Энергия электрического поля конденсатора до коммутации – , в результате полного разряда при .