- •Лабораторные работы по механике
- •Предисловие
- •Введение Место физики среди естественных наук и роль измерений в физике
- •Порядок работы в лаборатории
- •Виды физических измерений
- •Единицы измерения
- •I. Элементы теории погрешностей Ошибки измерения (погрешности) и причины их возникновения
- •Определение величины ошибки при прямых измерениях
- •Коэффициенты Стьюдента
- •Относительная ошибка
- •Пример записи результатов прямых измерений
- •Функция нескольких переменных (ошибки косвенных измерений)
- •Способы уменьшения ошибки измерения
- •Некоторые правила приближенных вычислений
- •Графическое представление результатов
- •II. Простейшие физические измерения Линейный нониус и штангенциркуль
- •Микрометрический винт и микрометр
- •Угловой нониус и оптический угломер
- •Технические весы
- •Аналитические весы
- •Электрические весы
- •Торсионные весы
- •Общие правила работы с весами
- •Лабораторная работа № 1 Проверка градуировки шкалы весов и определение их чувствительности
- •Краткая теория работы
- •Ход работы
- •Контрольные вопросы
- •Лабораторная работа № 2 определение массы капли воды
- •Краткая теория работы
- •Ход работы
- •Контрольные вопросы
- •Лабораторная работа № 3 Измерение линейных и угловых размеров твердого тела
- •Форма отчета по лабораторной работе № 3
- •I. Измерения штангенциркулем
- •Контрольные вопросы
- •Лабораторная работа № 4 Определение объема и плотности твердого тела
- •Краткая теория работы
- •Ход работы
- •Форма отчета по лабораторной работе № 4
- •Ход работы
- •II. Определение плотности твердого тела неправильной формы Ход работы
- •Контрольные вопросы
- •Лабораторная работа № 5 Определение плотности методом пикномера
- •Краткая теория работы
- •Порядок взвешивания Определение плотности жидкости
- •Определение плотности твердого тела
- •Контрольные вопросы
- •Лабораторная работа № 6 определение плотности методом гидростатического взвешивания
- •Краткая теория работы
- •Лабораторная работа № 7 изучение динамики поступательного и вращательного движения на установке
- •Теоретические основы работы
- •Определение ускорения поступательного движения груза на машине Атвуда
- •Определение момента сил трения в подшипнике блока машины Атвуда
- •Определение работы сил трения в машине Атвуда
- •Определение времени запаздывания при срабатывании фрикциона
- •Описание экспериментальной установки
- •Задания на проведение работы
- •Порядок выполнения работы в заданиях
- •Данные установки и таблица результатов измерений
- •Обработка результатов измерений
- •Контрольные вопросы и задания
- •Лабораторная работа № 8 изучение законов сохранения при соударении двух шаров
- •Теоретические основы работы
- •Определение средней силы взаимодействия при ударе шаров равной массы
- •Определение массы одного из шаров при их неупругом соударении
- •Определение среднего момента относительно точки подвеса, создаваемого силой, возникающей при взаимодействии упругих шаров
- •8.3. Схема абсолютно упругого удара 8.4. Область существенного смятия при абсолютно упругом ударе двух шаров
- •Определение средней силы взаимодействия соударяющихся шаров по радиусу площади их смятия в момент соударения
- •Описание экспериментальной установки
- •Задания на проведение работы
- •Порядок выполнения работы в заданииях
- •Данные установки и таблица результатов измерений
- •Обработка результатов измерений
- •Контрольные вопросы и задания
- •Лабораторная работа № 9 изучение динамики вращательного движения на крестообразном маятнике (маятник обербека)
- •Теоретические основы работы
- •О пределение момента инерции грузов, находящихся на стержнях маятника Обербека
- •Определение момента инерции маятника Обербека с учетом сил трения в подшипнике маятника
- •Определение момента сил трения в подшипнике маятника Обербека
- •Определение отношения моментов сил, действующих на маятник Обербека при его движении, для случаев, когда нить намотана на шкивы радиусами r1 и r2
- •Проверка формулы для периода колебаний физического маятника на установке “Маятник Обербека”
- •Описание экспериментальной установки
- •Задания на проведение работы
- •Порядок выполнения работы в заданиях
- •Данные установки и таблица результатов измерений
- •Обработка результатов измерений
- •Контрольные вопросы и задания
- •Лабораторная работа № 10 изучение плоского движения твердого тела с помощью маятника максвелла
- •Теоретические основы работы
- •Определение момента инерции маятника Максвелла
- •Отметим, что если нить не проскальзывает во время движения, то
- •Здесь Iв- момент инерции вала; Iд- момент инерции диска; Iк - момент инерции кольца. Проводя расчеты с использованием формулы для определения момента инерции
- •Определение моментов инерции элементов маятника Максвелла с использованием закона сохранения механической энергии
- •Определение средней силы натяжения нитей в момент «рывка» при движении маяника Максвелла
- •Описание экспериментальной установки
- •Задания на проведение работы
- •Порядок выполнения работы в заданиях
- •Данные установки и таблицы результатов измерений
- •Обработка результатов измерений
- •Контрольные вопросы и задания
- •Лабораторная работа № 11 изучение крутильных колебаний на унифилярном подвесе
- •Теоретические основы работы
- •Определение момента инерции параллелепипеда методом крутильных колебаний
- •Изучение зависимости периода колебаний крутильного маятника от начального угла отклонения
- •Описание экспериментальной установки
- •Задания на проведение работы
- •Порядок проведения работы в заданиях
- •Данные установки и таблицы результатов измерений
- •Обработка результатов измерений
- •Контрольные вопросы и задания
- •Лабораторная № 12 Изучение колебаний физического и математического маятников
- •Теоретические основы работы
- •Определение ускорения силы тяжести с помощью оборотного маятника
- •Определение положения центра тяжести физического маятника
- •Экспериментальное определение момента инерции тела сложной формы методом малых колебаний
- •Проверка теоремы Гюйгенса-Штейнера методом малых колебаний
- •Описание экспериментальной установки
- •Задание на проведение работы
- •Порядок выполнения работы в задании
- •Данные установки и таблицы результатов измерений
- •Обработка результатов измерений
- •Контрольные вопросы и задания
- •Лабораторная работа № 13 определение коэффициента внутреннего трения жидкости по методу стокса
- •Теоретические основы работы
- •Описание установки. Вывод расчетных формул
- •Порядок выполнения работы
- •Данные установки и таблица результатов измерения
- •Обработка результатов измерений
- •Контрольные вопросы и задания
- •Лабораторная работа №14 сухое трение. Определение коэффициента трения скольжения
- •Краткие теоретические сведения
- •Динамический метод определения коэффициента трения скольжения
- •Энергетический метод определения коэффициента трения скольжения
- •Ход работы и обработка результатов измерения
- •Контрольные вопросы
- •Лабораторная работа № 15 Определение коэффициентов трения скольжения и трения качения
- •Упражнение 1 Определение коэффициента трения скольжения
- •Описание установки
- •Измерения
- •Упражнение 2 Определение коэффициента трения качения
- •Принцип работы прибора. Подготовка к измерениям
- •Измерения
- •Контрольные вопросы
- •Лабораторная работа № 16 Определение ускорения силы тяжести при свободном падении тела
- •Природа сил. Классификация взаимодействий
- •Электромагнитные взаимодействия
- •Консервативные и неконсервативные силы
- •Теория метода и описание установки
- •Измерения и обработка результатов измерения
- •Фундаментальные взаимодействия Понятие силы
- •Контрольные вопросы
- •Лабораторная работа № 17 изучение движения тела по наклонной плоскости
- •1 Способ.
- •2 Способ.
- •Измерение и обработка результатов измерения
- •Контрольные вопросы
- •Лабораторная работа № 18 изучение затузающих колебаний
- •Порядок выполнения
- •Контрольные вопросы
- •Лабораторная работа № 19 исследование свойств гироскопа
- •Перечень механических подузлов гироскопа грм-10 /рис.19.1/
- •Подготовка гироскопа к работе. Определение угла прецессии и расчет скорости прецессии гироскопа.
- •1. Проверить заземление прибора.
- •Исследование зависимости прецессии гироскопа от перемещения грузика
- •Приложение
- •Основные физические константы
- •Коэффициент внутреннего трения некоторых жидкостей
- •Литература
- •Технический редактор и.Х.Сагидуллин
I. Элементы теории погрешностей Ошибки измерения (погрешности) и причины их возникновения
Физические величины связаны между собой определенными закономерностями. Установление количественных законов, показывающих, как меняются одни из измеряемых величин при изменении других, является одной из важнейших задач экспериментальной физики. Поэтому увеличение точности измерений необходимо для более глубокого познания закономерностей материального мира.
Методы измерения физических величин непрерывно совершенствуются. Например, в 1675 году датский ученый Олаф Рёмер впервые нашел значение скорости света: 215000 км/с. Фуко в 1862 году в лабораторных условиях измерил скорость света. У него она получилась равной 296000 км/с. В 1927 году Майкельсон получил для скорости света значение, равное 299796 км/с. Сегодня в физике принято значение скорости света, полученное в 1957 году: (299793 0,3) км/с. В случае приближенных расчетов принимают скорость света равной 3.108 м/с.
Повышения точности измерений позволяет обнаружить, казалось бы, незначительные отступления от физических законов, которые ранее упускались из виду. Такого рода поправки позволяют совершенствовать существующую теорию и учитывать их при выводе новых законов. Например, уравнение состояния идеального газа Менделеева-Клапейрона:
не могло дать хорошего согласия с экспериментом, так как не учитывались собственные размеры молекул и сложный характер их взаимодействия между собой. Более детальное рассмотрение этого вопроса привело к уравнению Ван-дер-Ваальса:
Иногда установленные новые эмпирические соотношения позволяют создавать совершенно новые теории. Например, закономерности, обнаруженные в спектре водорода (работы Бальмера, Ридберга, Ритца), послужили толчком к созданию теории атома водорода и далее квантовой механики (работы Бора, Гейзенберга и др.).
Таким образом, между практикой и теорией существует тесная связь, которая приводит к непрерывному развитию физики, все глубже и точнее отражающей объективные закономерности окружающего нас мира.
Между тем, вследствие неточности измерительных приборов, неполноты наших знаний, трудности учета всех побочных явлений при измерениях неизбежно возникают ошибки (погрешности). Погрешностью измерений называют разность между истинным значением измеряемой величины и результатом измерений. Теория погрешностей указывает на то, как следует вести измерения и их обработку, чтобы при достоверности результатов допущенные ошибки были минимальными.
В процессе выполнения экспериментальных работ, как в учебных, так и в научно-исследовательских лабораториях студенту приходится постоянно измерять и вычислять различные величины; при этом важно иметь представление о том, как правильно оценивать полученный результат, добиться разумной точности, уметь найти и оценить ошибку измерения.
Бессмысленно говорить об абсолютной точности произведенного измерения. Невозможно указать точно, например, размер атома или элементарной частицы, число молекул в комнате или единице ее объема и т. п. Можно говорить лишь о той или иной степени приближенности к искомой величине, о большей или меньшей ошибке или погрешности в произведенном измерении.
В перечисленных примерах нельзя назвать точное число, соответствующее размеру или количеству, потому что эти величины находятся в состоянии непрерывного изменения. Отсюда становится ясным, почему, например, нельзя измерить деталь с точностью до диаметра атома или число молекул в комнате до единиц. Однако диктуемой, как правило, техническими потребностями этой точности и не требуется.
Чем же ограничивается точность измерения, от чего зависит величина допускаемой ошибки и каковы ее источники? Сначала определим понятие ошибки (погрешности) измерения. Под погрешностью измерения х понимают отклонение результата измерения х от истинного значения хист измеряемой величины: х = х - хист. Эта погрешность выражена в единицах измеряемой величины и называется абсолютной погрешностью измерения.
Первой и, к сожалению, достаточно распространенной причиной ошибок служат так называемые промахи. Промахи (грубые погрешности) – это погрешности, значения которых существенно превышают ожидаемые при данных условиях. К ним относятся, например, неверно поставленные часы или неточно установленный нуль прибора, неправильная установка самого прибора (допустим, вертикальная вместо горизонтальной), неправильно записанная цифра или неразборчивая запись в черновике, как следствие, неверно переписанные данные и т. п.. В этом случае результат отдельного измерения резко отличается от результатов других измерений, выполненных при тех же условиях. Избежать этого вида ошибок позволяет серьезная предварительная подготовка и внимательное продуманное проведение эксперимента.
Второй источник трудно контролируемых ошибок связан с методом измерения, конструкцией прибора и влиянием незаметных, на первый взгляд, факторов. Так, изменение длины деревянной линейки в зависимости от влажности воздуха или размера металлических приборов - от температуры, а также спешащий или отстающий секундомер, ослабленная пружина весов, растворение вещества, предназначенного для спектрального анализа, растворителем, содержащим искомое вещество и т. п. Во всех перечисленных случаях допускаемая ошибка характеризуется отклонением в какую–либо одну сторону и называется систематической. Таким образом, систематическая погрешность – это составляющая погрешности измерений, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же величины.
Для избежания подобного рода ошибок (сведения их к минимуму) необходимо тщательно готовить экспериментальные установки, приборы и оборудование, исключая возможные факторы, влияющие на результат; выбирать методы, позволяющие более точно определять значения величин. Приборы и оборудование должны храниться должным образом и периодически проверяться (сравниваться с эталоном). Минимальная относительная систематическая погрешность определяется классом точности прибора. Классом точности называется максимальная абсолютная погрешность прибора, выраженная в процентах от всей действующей шкалы прибора. По классу точности прибора и пределу измерения определяется абсолютная погрешность. Если измеряемая величина меньше предела измерения прибора, то ее относительная ошибка будет больше класса точности. Абсолютная систематическая погрешность в некоторых случаях определяется как половина цены наименьшего деления шкалы прибора или как половина цены последней значащей цифры (в случае цифрового прибора). В случае равномерной шкалы эта погрешность одинакова для всех измерений.
Третий вид ошибок - случайные ошибки. Они имеют место всегда при любом измерении, вызываются различными причинами и приводят к отклонению результатов, как в большую, так и в меньшую сторону. Другими словами, случайная погрешность измерения – составляющая погрешности измерения, изменяющаяся случайным образом при повторных измерениях одной и той же величины. Она возникает от многих причин, каждая из которых в отдельности мало влияет на результат измерения. К такого рода ошибкам относятся, например, ошибки, обусловленные различным прижатием микрометрического винта или ножек штангенциркуля, различное положение глаза при отсчете по шкале и т. п. Вся статистическая теория погрешностей связана с изучением и учетом ошибок именно такого рода.
В общем случае при измерении любой величины могут присутствовать все три вида ошибок, но последний вид будет представлен всегда.