
- •Федеральное агентство по образованию
- •“Воронежская государственная технологическая академия”
- •Ю .В. Бугаев, и.Ю. Шурупова
- •Операции над множествами
- •Лекция № 2 Отображения
- •Мощность множества
- •Лекция № 3 Свойства счетных множеств
- •Множества мощности континуума и выше
- •Лекция № 4 нечеткие множества
- •Примеры записи нечеткого множества
- •Основные характеристики нечетких множеств
- •Примеры нечетких множеств
- •О методах построения функций принадлежности нечетких множеств
- •Операции над нечеткими множествами
- •Наглядное представление операций над нечеткими множествами
- •Свойства операций и .
- •Лекция № 5 Бинарные отношения и операции над ними
- •Свойства операций над отношениями
- •Способы задания бинарных отношений
- •Лекция № 6 Свойства бинарных отношений
- •Специальные бинарные отношения. Упорядочение и безразличие
- •Лекция № 7 Слабый порядок
- •Разбиение и эквивалентность
- •Качественный порядок
- •Лекция № 8 Функция выбора. Основные понятия
- •Классификация функций выбора
- •Задача векторной оптимизации
- •Лекция № 9 комбинаторные конфигурации и их приложения
- •1. Основные задачи, обозначения и правила
- •2. Простейшие конфигурации
- •2.6. Свойства чисел сочетаний
- •3. Комбинаторные конфигурации в алгебре и анализе
- •Лекция № 10 Комбинаторные алгоритмы
- •Аналитический аппарат комбинаторики
- •1. Принцип включения и исключения
- •1.2. Модификации формулы включения и исключения
- •Лекция № 11 Рекуррентные соотношения
- •4. Производящие функции
- •4.3. Пример использования производящих функций
- •5. Связь производящих функций с линейными рекуррентными соотношениями
- •Лекция № 12 теория грАфов Вводные понятия
- •1.1. Основные понятия теории графов
- •1.2. Машинное представление графа
- •Лекция № 13 Степени, маршруты, связность
- •2.1. Степени вершин графов
- •2.2. Маршруты и цепи
- •2.3. Связность
- •Лекция № 14 Алгоритмы обхода вершин в графах общего вида
- •Лекция № 15 Деревья Эквивалентные определения дерева
- •4.2. Остов
- •Лекция № 16 Специальные вершинные подмножества графа Определения вершинных подмножеств
- •5.2. Теоремы о вершинных подмножествах
2.1. Степени вершин графов
Def. Степенью вершины v графа называется число инцидентных ей ребер. Обозначается deg v. Вершина степени 0 называется изолированной, степени 1 – концевой или висячей.
Для орграфа вводятся также понятия
- полустепень исхода – число дух выходящих из v; обозначается deg– v;
- полустепень захода – число дух входящих в v; обозначается deg+ v;
Свойство.
.
Теорема
2.1. (Теорема
Эйлера, лемма о рукопожатиях).
;
Доказательство очевидно, если учесть, что каждое ребро в данной сумме учитывается 2 раза.
Теорема 2.2. (о нечетных степенях). В конечном графе число вершин с нечетными степенями четно.
Доказательство.
Обозначим
.
По теореме 1.2. S
четно. Далее, положим SЧ
– сумма степеней вершин с четной
степенью, SН
– сумма степеней вершин с четной
степенью. Очевидно, S
= SЧ
+ SН.
В SЧ
каждое слагаемое четно, значит, само SЧ
тоже четно. Отсюда, в силу четности S,
получаем, что SН
четно. Но
каждое слагаемое в нем – нечетно.
Следовательно, таких слагаемых должно
быть четное число. Ч
Т Д.
2.2. Маршруты и цепи
Def. Пусть G = (V, E) – неориентированный граф. Маршрутом называется такая последовательность его ребер e1, … ek, что каждые два соседних ребра ej, ej+1 имеют общую вершину.
Пусть e1 = (v0, v1), ek = (vk–1, vk). Тогда v0 – начальная, vk – конечная вершины маршрута. Если v0 = vk, то такой маршрут называется циклическим маршрутом.
Маршрут называется цепью, а циклический маршрут – циклом, если все их ребра различны. Если все вершины цепи различны, то это простая цепь. Если все вершины цикла различны, то это простой цикл.
Ч
2
1
В этом графе: (1, 2) и (1, 2, 4, 7) – простые цепи; (1, 2, 4, 7, 8, 4) – цепь, но не простая; (1, 2, 4, 7, 8, 4, 2) – маршрут, но не цепь; (1, 2, 4, 1) – простой цикл; (1, 2, 4, 7, 8, 4, 1) – цикл.
Задание 1. Доказать, что маршрут наименьшей длины, соединяющий две вершины графа является простой цепью.
Задание 2. Обозначим d(u, v) – длина маршрута наименьшей длины, соединяющего вершины u и v. Доказать, что для любых вершин x, y, z выполняется неравенство треугольника: d(x, y) d(x, z) + d(z, y).
Для орграфа существуют аналогичные понятия: неориентированный маршрут, цепь, цикл и т.д., в которых при прохождении ребер их ориентация не принимается во внимание. Также существуют ориентированный маршрут, цепь, цикл, в которых ребра проходятся в направлении их ориентации (по стрелке). Ориентированная цепь называется также путем, ориентированный цикл – контуром.
Свойства маршрутов. 1. Всякий маршрут, соединяющий вершины u и v, содержит простую цепь, соединяющую u и v.
Доказательство очевидно, т.к. удалив из маршрута повторяющиеся куски, можно преобразовать его в простую цепь.
2. Всякий цикл содержит простой цикл.
Доказательство аналогично.
3. Объединение двух несовпадающих простых цепей, соединяющих u и v, содержит простой цикл.
Доказательство. Пусть последовательности вершин P = (u1, …, uk) и Q = (v1, …, vs) – несовпадающие простые цепи, u1 = v1 = u. Пусть ui и vi – первые, считая от u, несовпадающие вершины, а uj и vr – первые из совпадающих вершин (uj = vr) после ui и vi .
Тогда ui-1, ui , …, uj , vr–1, … , vi, ui–1 – простой цикл (см. рис.) .
uj–1
ui
….
uj
ui-1
u2
u1
v
u
…
….
vr
vi–1
v1
v2
vi
….
vr–1