Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Старк-Пылеулавливание_учебник-ВЕСЬ-копия.doc
Скачиваний:
342
Добавлен:
21.08.2019
Размер:
36.47 Mб
Скачать

§ 4. Адсорберы с кипящим слоем поглотителя

В кипящем слое процесс адсорбции протекает более интенсивно, чем в неподвижном слое, вследствие уменьшения внешнедиффузионного сопротивления из-за более высоких скоростей газового потока и внутридиффузионного сопротивления из-за меньших размеров зерен адсорбента. При интенсивном перемешивании в кипящем слое происходит сильное истирание зерен адсорбента, в связи с чем последний должен обладать повышенной механической прочностью.

Адсорберы с кипящим слоем поглотителя обычно выполняют многоступенчатыми (рис. 16.4), так как при одной ступени газ на выходе соприкасается с зернами, насыщенными поглощаемым компонентом, в результате чего происходит частичная десорбция, снижающая эффективность работы аппарата. В корпусе многоступенчатого адсорбера слои адсорбента, расположенные на решетке, приводятся во взвешенное состояние исходной газовой смесью, подаваемой снизу. Удаление газа из аппарата происходит через циклон, служащий для выделения захваченных частиц адсорбента. Адсорбент подается в аппарат сверху, перемещается со ступени на ступень по переточным трубам и удаляется из нижней части корпуса. В результате достигается хорошее извлечение поглощаемого компонента даже из «бедных» газов.

Рис. 16.4. Схема очистки газов от SO2 в кипящем слое сорбента: 1 — бункер с сорбентом; 2 — затвор; 3 — многополочный адсорбер; 4 — циклон; 5 — приемный бункер; 6 — десорбер; 7 — подогреватель; 8 — газодувка; 9 — грохот.

Методика расчета адсорберов с кипящим слоем поглотителя излагается в специальной литературе.

В химической технологии применяют также адсорберы с движущимся слоем, однако в металлургии для очистки газов они не получили распространения.

§ 5. Ионообменная очистка газов

Ионный обмен основан на свойстве некоторых твердых веществ (ионитов) обменивать содержащиеся в них ионы на другие ионы, содержащиеся в растворах или в газовых смесях и подлежащие удалению. Иониты, способные поглощать из раствора и газов положительные ионы, называются катионитами, а способные поглощать отрицательные ионы — анионитами. Первые обладают кислотными свойствами и имеют общую формулу HR, а вторые — основными свойствами и пишутся и имеют общую формулу HCR, где R — радикал, а Н и ОН — обменивающиеся ионы. Иониты могут иметь и солевую форму, например R2CO3 или R2SO3.

В жидкостях иониты имеют значительно большую активность, чем в газах, и поэтому для очистки жидкостей иониты получили уже широкое промышленное применение. Для очистки газов, т.е. извлечения из газовых смесей определенных газообразных компонентов, иониты еще только начинают применяться в народном хозяйстве после прохождения стадий лабораторных и полупромышленных исследований.

Реакции обмена в газах протекают следующим образом:

кислотная форма ионита HR + NH3 raз → NH4R;

основная форма ионита HCR+HCl raз → RCl + Н2O;

солевая форма ионита R2CO3+SO2 raз → R2SO3+CO2.

Реакция идет до достижения ионообменного равновесия, скорость установления которого зависит от гидродинамического режима движения газа, концентрации обменивающихся ионов, структуры зерен ионита, его проницаемости для ионов. Скорость ионного обмена определяется диффузией в пограничном слое газа и диффузией в зерне ионита. Химическая реакция ионного обмена происходит быстро и не определяет общую скорость процесса.

Таким образом, отличие ионообменных процессов от обычных адсорбционных состоит в том, что обмен ионами, происходящий между ионитами и газовой смесью, связан с протеканием гетерогенной химической реакции между ионитом и каким-либо газообразным компонентом, находящимся в газовой смеси. Наиболее изученным процессом является сорбция аммиака катионитом. Результаты исследований показывают, что активность катионита сильно зависит от его влажности, с увеличением которой катионит резко активируется. Это объясняется меньшей доступностью для ионов функциональных групп сухого ненабухшего катионита. Активность катионита несколько снижается при повышении концентрации аммиака в газе, видимо, в результате повышения температуры при экзотермической реакции взаимодействия катионита с аммиаком. При увеличении толщины слоя активность катионита возрастает, однако уже при 12 см достигает максимума и перестает изменяться. С увеличением скорости прохождения газа через слой активность катионита снижается.

Для замкнутого технологического процесса крайне важны возможность эффективной десорбции поглощаемого компонента и восстановление поглощающей способности ионита. Десорбцию можно осуществить путем промывки полученного соединения слабым раствором кислоты или щелочи, при которой ионит переводится в свою первоначальную форму, например по реакции

Такого же результата можно достичь продувкой слоя газовым десорбентом, например хлористым водородом и аммиаком.

Иногда десорбцию можно осуществить нагревом и разложением полученного в результате ионного обмена соединения.

Иониты могут иметь как природное, так и искусственное происхождение. К неорганическим природным ионитам относятся глинистые материалы, полевые шпаты, глауконит, слюда и т. д. Катионообменные свойства их обусловлены содержанием алюмосиликатов. К синтетическим катионитам относятся пермутит, силикагель. Наиболее перспективны синтетические органические соединения — ионообменные смолы, представляющие собой высокомолекулярные химически активные полимерные вещества, некоторые из которых способны к обмену катионов, а другие анионов. Иониты выпускаются преимущественно в виде гранул сферической или неправильной формы размером 0,3—2 мм с насыпной массой 650—850 кг/м3. В последние годы развивается производство ионитных волокон диаметром 5—35 мкм и текстильных изделий, обладающих более высокой химической, термической и радиационной стойкостью и увеличенной объемной емкостью. Эти материалы благодаря тканеобразной форме позволяют радикально усовершенствовать конструкцию ионитовых фильтров.

Аппаратурное оформление процессов ионообменной очистки газов во многом аналогично оформлению процессов адсорбции. Ионообменные аппараты изготовляют периодического и непрерывного действия, с неподвижным, движущимся и взвешенным слоем ионита. Полный цикл работы ионообменного аппарата должен включать следующие стадии: ионообмен, т. е. поглощение заданного газового компонента ионитом; отмывку ионита от механических примесей; регенерацию ионита, т. е. приведение ионита в начальное состояние; отмывку ионита от регенерирующего раствора.

Специально разработанная для ионообменной очистки газов аппаратура серийно пока не выпускается.

Контрольные вопросы

  1. Как протекает процесс адсорбции? Изотермы адсорбции.

  2. Какие вещества применяют в качестве адсорбентов?

  3. Устройство и работа адсорберов различного типа.

  4. Основы расчета адсорберов с неподвижным слоем поглотителя.

  5. Ионообменная очистка газов.