Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Радиология.doc
Скачиваний:
269
Добавлен:
04.05.2019
Размер:
22.97 Mб
Скачать

2.2. Лучи имени Рентгена

Открытие рентгеновских лучей было первым великим прорывом в область, куда ни один человеческий ум не дер­зал проникнуть.

Артур Кларк

Рентгеновское излучение занимает область электромагнитного спектра между гамма- и ультрафиолетовым излучением и представляет собой поток квантов (фотонов), распространяющихся со скоростью света (300 000 км/с). Эти кванты не имеют электрического заряда. Масса кванта составляет ничтожно малую часть атомной единицы массы. Энергию квантов измеряют в джоулях (Дж), но на практике часто ис­пользуют внесистемную единицу электрон-вольт (эВ).

Один электрон-вольт — это энергия, которую приобретает один элек­трон, пройдя в электрическом поле разность потенциалов в 1 вольт. 1 эВ = 1,6 10~'9 Дж. Производными являются килозлектрон-вольт (кэВ), равный 1 тыс эВ, и мегаэлектрон-вольт (МэВ), равный 1 млн эВ.

Рентгеновское излучение возникает при торможении быстрых элек­тронов в электрическом поле атомов вещества (тормозное излучение) или при перестройке внутренних оболочек атомов (характеристическое излу­чение). Тормозное излучение имеет непрерывный спектр, зависящий от анодного напряжения на рентгеновской трубке. Средняя эффективная энергия квантов составляет приблизительно У$ от максимального напря­жения, приложенного к трубке. Например, при максимальном напряже­нии 50 киловольт (кВ) средняя энергия рентгеновских квантов около 30 кэВ, при 100 кВ — 65 кэВ, при 150 кВ — 100 кэВ. Рентгеновское излу­чение именно в данном диапазоне энергий используют в рентгенодиаг­ностике.

Рентгеновское излучение обладает рядом свойств, обусловливающих его значительные отличия от видимого света. Оно проникает через тела и предметы, не пропускающие свет; вызывает свечение ряда хи­мических соединений (на этом, кстати, основана методика рентгенов­ского просвечивания); разлагает галоидные соединения серебра, в том числе находящиеся в фотоэмульсиях, что позволяет получать рентге­новские снимки. Важнейшим свойством рентгеновского излучения яв­ляется способность вызывать распад нейтральных атомов на положи­тельно и отрицательно заряженные частицы (ионизирующее действие). В связи с этим понятно, что это излучение не безразлично для живых организмов, поскольку обусловливает определенные изменения в био­субстрате.

Рентгеновское излучение широко используют в науке, технике и про­мышленности, но наибольшее значение приобрело это излучение в меди­цине, где оно легло в основу одного из ведущих методов клинического обследования. Однако это «уже совсем другая история», как любил повто­рять датский сказочник Х.Андерсен, и мы вернемся к ней позже.

2.3. Звездный час Беккереля

Как бы ни было разнообразно воображение человека, при­рода еще в тысячу раз богаче.

А.Пуанкаре

Стокгольм, 10 декабря 1903 г. В зале Шведской академии наук, на том месте, где 2 года назад стоял Рентген, находился невысокий человек» тоже физик, но из Франции — Анри Беккерель. Король Швеции вручал ему дип­лом лауреата Нобелевской премии. О чем думал Анри Беккерель в эти ми­нуты душевного волнения, когда перед человеком порой проходит вся его жизнь?

Может быть, в памяти Анри Беккереля возник на мгновение образ деда — члена парижской Академии наук Антуана Беккереля. Красота светящегося ночного моря в Венеции заставила его еще в молодости задуматься над уди­вительным явлением люминесценции — способности некоторых веществ светиться в темноте после воздействия на них видимого света. С тех пор эта проблема стала чуть ли не фамильным достоянием семьи Беккерелей. Или мысль Анри Беккереля обратилась к тем уже далеким дням, когда вместе с отцом — профессором физики Александром Беккерелем он ставил первые опыты по изучению люминесценции солей урана. Уже тогда он знал, что эти соли светятся в темноте, если их предварительно подвергнуть действию солнечных лучей. А может быть, ему вспомнился период научного поиска и вдохновения, охватившего физиков всего мира после открытия Рентгена и побудившего многих ученых возвратиться к загадочному явлению люмине­сценции. Научный мир тогда был словно заражен лихорадкой открытий — поиском таинственных излучений. Именно Анри Беккерель вместе с дру­гим французским ученым — физиком, математиком и философом Анри Пуанкаре — предположил, что «Х-лучи» могут испускаться фосфоресциру­ющими веществами.

Для своих опытов Беккерель выбрал кристаллы калийуранилсульфа-та — одного из наиболее сильных фосфоресцирующих веществ. Беккерель был страстный, но строгий искатель, и даже сильное волнение не могло нарушить педантичность экспериментатора. Проследите за чистотой его опытов! Он ставит исходный эксперимент: в полной темноте берет фото­пластинку, заворачивает ее в два слоя черной бумаги, не пропускающей видимый свет, и выставляет в окно: пусть весеннее солнце заливает ее лу­чами. Затем он проявляет пластинку и убеждается, что она не экспониро­вана. На следующий день Беккерель повторяет опыт, но сверху на плас­тинку помещает металлический крест, покрытый солью урана. Под дейст­вием солнечных лучей соль должна сильно светиться. Если она, кроме ви­димого света (фосфоресценции), испускает невидимое излучение, то через несколько часов... Скорее проявим пластинку... Успех! На пластин­ке получено изображение креста, следовательно, урановая соль дает излу­чение, проходящее через черную бумагу и разлагающее соли серебра в фо­тоэмульсии, подобно рентгеновскому излучению. Значит, фосфоресци­рующие вещества испускают не только видимый свет, но и невидимое из­лучение?

24 февраля 1896 г. Анри Беккерель доложил результаты своих опытов на заседании Парижской академии наук. Это было предварительное сооб-

19

щение казалось бы, подтверждающее предположение А. Беккереля и А Пуанкаре. Однако дальше события приняли иной оборот. 2 марта дол­жен был состояться основной доклад Беккереля. Готовясь к нему, ученый наметил провести новую серию опытов, но 26 и 27 февраля в Париже было пасмурно, и пластинки, подготовленные для эксперимента, пролежали два дня на полке вместе с кристаллами калийуранилсульфата. 1 марта, нако­нец, выглянуло солнце и, хотя это был воскресный день, Беккерель пришел в лабораторию, чтобы закончить опыт. Однако основимся на мгновение, ибо здесь кульминация драмы и торжество мастера! — он не выставляет пластинки в окно, а проявляет их. Ведь они пролежали долгое время вместе с солями урана, а это не соответствует условиям прежних опытов. Вот оно — господство над случаем! Впрочем, Беккерель скажет позднее: «Я сде­лал новый опыт, который все равно провел бы рано или поздно, когда я систематически изучил бы формы действия и их продолжительность для фосфоресцирующих веществ через непрозрачные тела на фотографическую пластинку». Значит, и случай может быть пойман в ловушку искусного по­следовательного экспериментатора.

Начал Беккерель с того, что проявил пластинки, полагая, что увидит на них лишь легкую вуаль. Каково же было его удивление, когда оказалось, что пластинки засвечены, причем очень сильно. Что это могло означать? Только то, что соли урана способны самостоятельно, без возбуждения извне засвечивать фотопластинки. Благодаря чему? Очевидно, вследствие того, что они испускают невидимые лучи особого рода, проникающие через черную бумагу. Бесконечной вереницей тянутся новые и новые опыты. Беккерель устанавливает, что источником излучения является сам уран. 23 ноября 1896 г. на заседании Парижской академии наук Беккерель окон­чательно прощается с мыслью о связи фосфоресценции и открытого им из­лучения и называет последнее урановыми лучами. Так теоретическая догад­ка, пусть и не до конца правильная, послужила толчком к познанию неве­домого естественного явления природы. «Гипотезы,— писал В. Гете,— это леса, которые возводят перед зданием и сносят, когда здание готово,— они необходимы для работника: он не должен только принимать леса за зда­ние».

Гипотеза о специфических «урановых лучах» была вскоре развенчана. Оказалось, что способностью испускать проникающее излучение обладает также торий. Об этом сообщили 4 февраля 1898 г. Берлинскому научному обществу Г. Шмидт и 12 апреля того же года Парижской академии наук Мария Склодовская-Кюри. А Резерфорд установил, что так называемые урановые лучи — это на самом деле смесь излучений. Стало известно, что в их состав входят а-, р-частицы и у-излучение.

Итак, Беккерель открыл явление естественной радиоактивности. От­крытие рентгеновского излучения и естественной радиоактивности — звенья одной цепи, первые камни фундамента, на котором были постро­ены и современная ядерная физика, и современная медицинская радио­логия.

В следующем разделе мы познакомимся со свойствами у-излучения, а- и р-частиц.

20