
- •Предисловие
- •Введение
- •Глава 1. Основные сведения о лакокрасочных материалах
- •1.1. Классификация и обозначение лакокрасочных материалов
- •Примеры обозначения лакокрасочных материалов.
- •1.2. Состав лакокрасочных материалов
- •1.2.1. Пигменты
- •Пигменты
- •1.2.2. Удешевляющие добавки, наполнители
- •1.2.3. Растворители
- •1.2.4. Добавки
- •Глава 2. Лакокрасочные материалы на основе поликонденсационных смол
- •2.1. Алкидные лакокрасочные материалы
- •1 Бункер для пигментов; 2 смеситель, быстроходный;
- •3 Смеситель напорный; 4, 5 бисерные мельницы;
- •6 Мерная емкость для лака; 7 хранилище одноколерных паст;
- •2.2. Свойства и применение алкидных лакокрасочных материалов
- •2.3. Карбамидо- и меламиноформальдегидные лакокрасочные материалы
- •2.3.1. Свойства и применение карбамидоформальдегидных
- •2.3.2. Меламиноформальдегидные лакокрасочные материалы
- •2.3.3. Фенолоформальдегидные лакокрасочные материалы
- •2.4. Алкидно-стирольные лакокрасочные материалы
- •2.4.1. Свойства и применение некоторых промышленных
- •2.4.2. Алкидно-акриловые эмали
- •2.5. Эпоксидные лакокрасочные материалы
- •2.6. Эпоксиэфирные лакокрасочные материалы
- •2.7. Полиэфирные лакокрасочные материалы
- •2.8. Полиуретановые лакокрасочные материалы
- •2.9. Кремнийорганические лакокрасочные материалы
- •2.10. Фуриловые лакокрасочные материалы (лаки и эмали)
- •2.11. Циклогексанонформальдегидные лаки
- •Глава 3. Лакокрасочные материалы на основе полимеризационных смол
- •3.1. Перхлорвиниловые лакокрасочные материалы
- •1 Замесочная машина; 2 краскотерочная машина для получения подколеровочных паст; 3 дежа; 4 смеситель; 5 диссольвер;
- •6 Мельница; 7 бисерная мельница; 8 промежуточная емкость;
- •9 Мерник; 10 шестеренчатый насос; 11 фильтр
- •1 Замесочная машина; 2 краскотерочная машина; 3 дежа;
- •4 Смеситель для эмали; 5 промежуточная емкость для основы; 6 смеситель для пигментной пасты; 7 мерник; 8 – фильтр;
- •9 Шестеренчатый насос
- •3.1.1. Лакокрасочные материалы на основе
- •3.2. Лакокрасочные материалы на основе полиакрилатов
- •3.3. Лакокрасочные материалы на основе поливинилацеталей
- •3.4. Эмали на основе хлоркаучука
- •3.5. Лакокрасочные материалы на основе эфиров целлюлозы
- •1 Мерники на весах, 2 емкости промежуточные; 3 насос шестеренчатый; 4 – малаксер; 5 смеситель с планетарной мешалкой;
- •6 Смеситель с якорной мешалкой; 7 центрифуга типа сго-100
- •3.6. Лакокрасочные материалы на основе битумов
- •3.7. Лакокрасочные материалы на основе природных смол
- •3.7.1. Циклокаучуковые эмали
- •3.8. Фторопластовые лаки и эмали
- •3.9. Эмали на основе хлорсульфированного полиэтилена
- •3.10. Пластизоли и органозоли (поливинилхлоридные лакокрасочные материалы)
- •3.10.1. Состав пластизолей и органозолей
- •3.10.2. Получение пластизолей и органозолей
- •3.11. Масляные и алкидные краски
- •1 Замесочная машина; 2 дежа; 3 краскотерочная машина;
- •4 Смеситель; 5 – насос; 6 фильтр
- •3.12. Порошковые краски
- •1 Электродвигатель, 2 мешалка; 3 турбосмеситель; 4 затвор; 5 рукав;
- •6 Смеситель; 7 вибросито; 8 затвор шлюзовой
- •3.12.1. Получение, свойства и применение порошковых красок
- •1 Смеситель сухих компонентов; 2 питатель; 3 экструдер двухчервячный;
- •4 Охлаждающее устройство; 5 мельница грубого помола; 6 мельница тонкого помола; 7 фильтр
- •3.13. Водоэмульсионные краски
- •1 Смеситель для приготовления раствора добавок; 2 весы; 3 хранилище для эмульсии; 4 насос; 5 – фильтр сетчатый; 6 смеситель быстроходный;
- •7 Промежуточный смеситель; 8 бункер для пигментов; 9 бисерная мельница; 10 смеситель
- •3.14. Контроль качества в лакокрасочной промышленности
- •3.15. Стандартизированные методы испытаний лакокрасочных материалов и покрытий
- •3.16. Определение технологических свойств лакокрасочных материалов
- •3.16.1. Условная вязкость
- •3.16.2. Срок годности
- •3.16.3. Содержание летучих и нелетучих твердых
- •3.16.4. Степень перетира
- •3.16.5. Цвет непигментированных лакокрасочных материалов
- •3.16.6. Укрывистость
- •3.16.7. Разлив
- •3.16.8. Электрические свойства
- •Глава 4. Лакокрасочные покрытия
- •4.1. Характеристика и классификация лакокрасочных покрытий
- •Классификация лкп по внешнему виду. Внешний вид поверхности покрытия характеризуется цветом, фактурой, качеством исполнения покрытия наличием или отсутствием дефектов. Определения основных дефектов.
- •Покрытий
- •Примеры обозначения лакокрасочных покрытий:
- •4.2. Требования, предъявляемые к лакокрасочным
- •1 Ньютоновское течение; 2 дилатантное течение;
- •3 Псевдопластическое течение; 4 пластическое течение;
- •4.3. Поверхностное натяжение жидких лакокрасочных материалов
- •4.4. Свойства порошковых лакокрасочных материалов
- •Глава 5. Взаимодействие лакокрасочных материалов с твердой поверхностью
- •5.1. Свойства твердой поверхности
- •5.2. Смачивание жидкими лакокрасочными материалами твердой поверхности
- •5.2.1. Формирование поверхности контакта
- •1 Подложка; 2 воздушные полости; 3 лакокрасочный материал
- •5.2.2. Смачивание поверхностей на воздухе
- •5.2.3. Смачивание увлажненных и погруженных в воду поверхностей
- •Глава 6. Свойства и разновидности покрытий
- •6.1. Прочностные и деформационные свойства
- •6.2. Факторы, влияющие на механические свойства покрытий
- •6.3. Покрытия целевого назначения. Морозостойкие покрытия
- •6.4. Износостойкие покрытия
- •6.5. Вибропоглощающие покрытия
- •6.6. Кавитационностойкие покрытия
- •6.7. Методы определения механических свойств пленок
- •6.7.1. Адгезия
- •6.7.2. Природа адгезионных связей
- •6.7.3. Молекулярное взаимодействие
- •6.7.4. Хемосорбционное взаимодействие
- •6.7.5. Электростатическое взаимодействие
- •6.7.6. Диффузионное взаимодействие
- •6.7.7. Факторы, влияющие на адгезионную прочность покрытий
- •1 Поливинилбутираль; 2 поликапроамид; 3 пентапласт; 4 сэвилен
- •6.7.8. Длительная адгезионная прочность
- •6.7.9. Взаимодействие покрытий с гидрофильными веществами
- •6.7.10. Покрытия целевого назначения
- •6.7.11. Методы определения адгезионной прочности
- •6.8. Внутренние напряжения
- •6.8.1. Возникновение и релаксация внутренних напряжений
- •6.8.2. Факторы, влияющие на внутренние напряжения
- •6.9. Проницаемость покрытий
- •6.9.1. Перенос жидкостей и газов через пленки
- •I покрытия с явной пористостью; II покрытия со скрытой пористостью;
- •III беспористые покрытия
- •1 Масляное; 2 алкидное; 3 хлоркаучуковое;
- •4 Битумное
- •6.9.2. Факторы, влияющие на проницаемость
- •6.9.3. Методы определения проницаемости
- •6.10. Оптические свойства
- •6.10.1. Пропускание, поглощение и отражение света покрытиями
- •I воздух; II пленка; III подложка
- •1 Полиакрилатного; 2 ацетилцеллюлозного; 3 меламиноалкидного;
- •4 Ацетилцеллюлозного с 0,3% 2-гидрокси-4-метоксибензофенона;
- •5 Ацетилцеллюлозного с 0,55 2,2-дигидрокси-4-метоксибензофенона
- •6.10.2. Покрытия как средство цветового оформления изделий и объектов
- •6.10.3. Покрытия целевого назначения
- •6.10.4. Методы определения оптических свойств покрытий
- •6.11. Электрические свойства
- •Глава 7. Определение физико – механических свойств лакокрасочных покрытий
- •7.1. Получение свободных пленок
- •7.1.1. Получение лакокрасочных покрытий для испытаний
- •7.1.2. Толщина лакокрасочных покрытий
- •7.1.3. Прочность пленок при ударе
- •7.1.4. Твердость покрытия по маятниковому прибору
- •Глава 8. Технология нанесения лакокрасочных материалов
- •8.1. Способы нанесения лакокрасочных материалов на поверхность
- •8.1.1. Классификация способов окрашивания
- •8.2. Пневматическое распыление
- •8.3. Электростатическое распыление
- •1 Окрасочная камера; 2 – пульт дистанционного управления;
- •6 Дозирующее устройство; 7 кенотронный выпрямитель тока;
- •8 Электростатический генератор; 9 – вытяжная вентиляция
- •8.4. Гидравлическое распыление
- •1 Корпус; 2 насос; 3 всасывающий клапан; 4 приемный шланг; 5 фильтр; 6 нагнетательный клапан; 7 сальник; 8 напорный шланг; 9 кран; 10 «удочка»; 11 форсунка
- •8.5. Окунание и облив
- •1 Ванна; 2 насос; 3 карман; 4 сточный лоток; 5 изделие
- •1 Подающие валки; 2 карандаш; 3 ванна с лакокрасочным материалом;
- •4 Ограничительные шайбы; 5 сушильный транспортер
- •8.6. Валковый способ
- •8.7. Электроосаждение
- •8.7.1. Электрофоретическое нанесение дисперсий
- •8.7.2. Электроосаждение лакокрасочных материалов из водных растворов
- •8.7.3. Лакокрасочные материалы при электроосаждении
- •8.7.4. Технология получения покрытий
- •12 Фильтр; 13 теплообменник
- •8.8. Получение покрытий способом электрополимеризации
- •8.9. Хемоосаждение
- •8.10. Ручные способы нанесения жидких лакокрасочных материалов
- •Глава 9. Способы отверждения покрытий
- •9.1. Тепловое отверждение покрытий
- •9.1.1. Конвективный способ
- •I подъем температуры, II собственно сушка, III охлаждение покрытия
- •9.1.2. Терморадиационный способ
- •1 Вентилятор; 2 воздушная завеса; 3 корпус камеры;
- •4 Рабочая зона; 5 излучатель; 6 тамбуры;
- •7 Конвейер; 8 изделие
- •9.1.3. Индукционный способ
- •9.2. Отверждение покрытий под действием уф излучения
- •9.3. Радиационное отверждение покрытий
- •1 Деталь мебели; 2 лаконаливная машина; 3 радиационно-химическая установка с ускорителями электронов
- •Глава 10. Технология окрашивания металлов
- •10.1. Подготовка поверхности перед окрашиванием
- •10.1.1. Механические способы очистки
- •10.1.2. Термические способы очистки
- •10.1.3. Химические способы очистки
- •Метасиликат натрия 3–5
- •10.1.4. Травление
- •10.1.5. Удаление старых покрытий
- •10.2. Нанесение конверсионных покрытий
- •10.3. Стадии технологического процесса получения покрытий
- •10.3.1. Грунтование
- •10.3.2. Шпатлевание
- •10.3.3. Нанесение верхних слоев покрытия
- •10.3.4. Шлифование и полирование
- •Глава 11. Технология окрашивания неметаллических материалов
- •11.1 Окрашивание и лакирование древесины. Покрытия древесины: прозрачные и непрозрачные
- •11.1.1. Получение прозрачных покрытий
- •11.1.2. Получение непрозрачных покрытий
- •11.2. Окрашивание и лакирование кожи
- •11.2.1. Покрывное крашение
- •11.3. Окрашивание пластмасс и резины
- •11.4. Технология изготовления декоративных
- •Литература
- •Оглавление
- •Химия и технология лакокрасочных материалов и покрытий
- •220050. Минск, Свердлова, 13а.
- •220600, Г. Минск, ул.Красная, 23. Заказ .
Метасиликат натрия 3–5
Синтанол 1–2
Условия проведения процесса:
Плотность тока, кА/м2 0,5–1,0
Температура, С 60–80
Продолжительность очистки, мин 1–2.
10.1.4. Травление
Окалину, ржавчину и другие оксиды преимущественно удаляют с поверхности металлов травлением в растворах кислот, кислых солей или щелочей. Очистка поверхности этим способом заключается в растворении оксидов и поверхностного слоя металла, восстановлении оксидных соединений и их отрыве, выделяющимся в процессе травления водородом. Перед травлением поверхности изделие предварительно очищают от механических и жировых загрязнений.
Травление черных металлов. Травильные растворы для черных металлов: растворы серной, соляной и ортофосфорной кислоты с различными добавками и присадками.
Серная кислота более активно взаимодействует с железом, чем с безводными ее оксидами (при травлении растворяется не более 20% окалины). Проникая в поры и трещины окалины, кислота растворяет поверхностный слой металла и тем самым нарушает его связь с окалиной. Следовательно, травление в серной кислоте сопровождается образованием значительных количеств шлама, наводораживанием стали, ее охрупчиванием. Поверхность металла в результате «растравливания» приобретает высокоразвитый рельеф. Чаще используют кислоту с концентрацией 150–200г/л, процесс травления ведут при 50–80С.
В соляной кислоте удаление окалины осуществляется преимущественно в результате ее растворения (снижение массы окалины достигает 50%и более). В итоге поверхность металла после травления в соляной кислоте более гладкая, чем в серной: снижается и степень шламообразования.
В соляной кислоте процесс травления удовлетворительно протекает при температурах 20–60С, оптимальная концентрация кислоты 100–150г/л. Применение соляной кислоты, однако, менее удобно, чем серной, поэтому для травления чаще используют серную кислоту, а также смеси серной кислоты с соляной и хлоридом натрия. Присутствие NaCl не влияет на скорость растворения оксидов, но снижает скорость коррозии железа.
Еще более эффективным в этом отношении является введение в состав травильных растворов ингибиторов коррозии (присадок), например, ЧМ, БА6, БА12, ПКУ, И1А, И1В, уротропин и др.
Травление металлов фосфорной кислотой проводят значительно реже, чем серной и соляной, из-за ее меньшей активности и более высокой стоимости. Ее используют для удаления ржавчины при небольших степенях загрязнения металла. В этом случае пригодны разбавленные (12%-е) растворы Н3РО4. Эти растворы наряду с растворением оксидов вызывают одновременное пассивирование металла (образование на поверхности нерастворимых фосфатов железа). Достоинством фосфорной кислоты является и то, что она не требует такой тщательной промывки металла после обработки, как в случае серной и особенно соляной кислот.
Составы для травления в зависимости от вида металла, степени его загрязнения оксидами и способа очистки различны. Ниже приведены составы (в г/л) для травления черных металлов (13 углеродистой стали и чугуна), (4, 5 — легированной стали).
Таблица 10.2. Составы для травления (г/л) черных металлов 13 углеродистой стали и чугуна, 45 легированной стали
Состав |
1 |
2 |
3 |
4 |
5 |
Серная кислота (плотность, 1,84) |
150200
|
70100
|
100150
|
400450
|
|
Соляная кислота (плотность 1,19) |
|
100150
|
|
250300
|
350380
|
Азотная кислота (плотность1,38) |
|
|
|
|
8090 |
Хлорид натрия |
|
|
75100 |
|
|
Присадка (катапин, ингибитор БА6, уротропин) |
35 |
46 |
35 |
35 |
|
Для очистки изделий после ковки, горячей прокатки, обжига и термообработки при необходимости применяют гидридное травление. Изделия погружают в расплавленный едкий натр, в который из специального генератора подают гидрид натрия (продукт взаимодействия натрия и водорода). Очистка сопровождается восстановлением оксидов:
Кислотное травление изделий небольших размеров, как правило, осуществляют в ваннах или в струйных камерах. При струйной обработке продолжительность травления обычно не более 5 мин, в ваннах 30 мин. Затем изделия промывают последовательно горячей и холодной водой, нейтрализуют остаточную кислоту 12%-м раствором кальцинированной соды или обрабатывают поверхность 2%-м раствором фосфорной или хромовой кислоты или смеси этих кислот (1/1) при 6570°С. Хорошие результаты также дает применение раствора, содержащего К2СrО4 (20 г/л) и NaOH (5 г/л); температура раствора 8590°С, продолжительность обработки 12 мин.
По конструкции установки для травления аналогичны установкам для щелочного обезжиривания. В связи с высокой агрессивностью сред, необходимо большое внимание уделять выбору конструкционных материалов и обеспечению необходимых мер пожаро- и взрывобезопасности (при травлении выделяется значительное количество водорода).
Для удаления продуктов коррозии с поверхности крупногабаритных изделий применяют специальные жидкие или вязкие составы (пасты). Их изготовляют путем введения в жидкие травильные растворы наполнителей (инфузорной земли, андезитовой муки, асбеста, каолина) и полимеров (карбоксиметил-целлюлозы и др.). Пасты наносят на поверхность шпателем, штукатурными лопатками или пастопультом и выдерживают 16 ч. После этого поверхность промывают водой, наносят пассивирующую пасту (с Н3РО4 или Н2СrО4) и через 0,51 ч снова промывают и высушивают.
При подготовке поверхности стали, особенно легированных марок, часто применяют электрохимическое (анодное) травление, которое проводят при следующих режимах:
Состав раствора, г/л:
H2SO4 5060
HCl 3040
NaCl 2030
Плотность тока, кА/м2 0,51,0
Температура,С 2040
Продолжительность травления, мин 30
Травление цветных металлов. При травлении цветных металлов достигается: удаление оксидов с поверхности и создание активного слоя для повышения адгезии покрытий.
Алюминий и его сплавы подвергают травлению в 510%-м растворе каустической соды с добавлением сульфонола (~0,5 г/л) при 6070°С. После травления в течение 310 мин и промывки изделия обрабатывают (осветляют) 1520%-й азотной кислотой при 1525°С в течение 23 мин. Обработку деталей из меди и медных сплавов проводят в две стадии: сначала травление в азотной кислоте (700800 г/л) или ее смесях с серной, затем поверхность осветляют кратковременным воздействием смеси серной, азотной и соляной кислот.
Термическую окалину с поверхности титана и его сплавов снимают погружением изделия в расплав смеси едкого натра и нитрата натрия (4/1 по массе) при 420440°С; при травлении магниевых сплавов используют разбавленные растворы азотной кислоты (30–90 г/л). Травление цветных металлов, как и черных, можно сочетать с их обезжириванием. Для этого в состав травильных растворов вводят ПАВ (ОП–7, ОП–10 и др.) и противопенные добавки (жидкость ПМС–20 А, уайт–спирит). Применяют также составы:
эмульсии органических растворителей (алифатических и хлорированных углеводородов) в кислотах;
водные растворы смесей фосфорной кислоты с ее солями (Na3PO4).
Обязательные операции при травлении цветных металлов: промывка и пассивация. Последнее осуществляется кратковременной (1–2 мин) обработкой изделий растворами бихромата калия или хромовой кислоты с концентрацией 1–3 г/л при 60–65С. Травление черных и цветных металлов кислотами – наиболее дешевый способ очистки их поверхности от оксидов. Ниже приведены примерные данные по стоимости обработки 100м2 поверхности разными способами (в руб.), цены на 1990г:
-
Пламенная очистка
77–154
Струйная очистка абразивами
77–96
Травление в фосфорной кислоте
28,8–48
Травление в серной кислоте
9,6–28,8
Очистка механизированным инструментом
19,848
Что касается срока службы покрытий, то наилучшей является обработка поверхности сухими абразивами.