Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
пособие - с оглавлением.doc
Скачиваний:
128
Добавлен:
23.12.2018
Размер:
4.27 Mб
Скачать

2.2.3. Метод Ньютона – метод касательных

Пусть - корень уравнения отделен на отрезке , причем и непрерывны и сохраняют определенные знаки на этом же отрезке . Найдя какое-нибудь n-е значение корня (), уточним его по методу Ньютона. Для этого положим , где - считаем малой величиной. Разложим функцию f(x) в ряд Тейлора в окрестности точки x n по степеням h n . Тогда можно записать:

Ограничимся двумя членами ряда и так как, то:

.

Учитывая найденную поправку hn:,получим (n=0,1,2,…).

Рис.2.7 Метод касательных. Начальное приближение x0=b

По-другому этот метод называется методом касательных. Если в точке провести касательную к функции f(x) , то ее пересечение с осью ОХ и будет новым приближением x1 корня уравнения

Хорошим начальным приближением является то значение, для которого выполнено неравенство . Погрешность вычислений Счет можно прекратить, когда

Теорема 2.2: Если , причем и отличны от нуля и сохраняют определенные знаки при , то, исходя из начального приближения, удовлетворяющего условию , можно вычислить методом Ньютона единственный корень уравнения с любой степенью точности.

Пример 2.5. Найти методом Ньютона корень уравнения x4-x-1=0,

1-я производная

2-я производная положительна

один корень лежит на промежутке (-1.-0.5), второй на промежутке (1.1.5)

Уточним левый корень методом Ньютона

Нашли корень исходного уравнения -0.7245 с точность 0.00007.

Рис. 2.8. Вычисления в Mathcad, реализующие метод касательных для примера 2.5

2.2.4. Модифицированный метод Ньютона

Если производная мало изменяется на отрезке [a,b] то в формуле можно положить . Отсюда для корня уравнения получаем последовательные приближения по формуле (n=0,1,…)..

Рис.2.9. Модифицированный метод Ньютона

Оценка точности делается, как в методе Ньютона.

2.2.5. Метод секущих

Заменим производную функции f(x) в точке xn на функцию F(x) в этой же точке. Подставим ее вместо производной в формулу Ньютона.

,

.

В методе секущих требуются задать для начала счета два значения x0 и x1. Отрезок [x0, x1] не обязательно должен содержать корень уравнения.

Оценка точности делается, как в обыкновенном методе Ньютона

2.2.6. Метод итераций

Пусть дано уравнение

, (2.1)

где - непрерывная функция. Заменим его равносильным уравнением

. (2.2)

Выберем каким-либо способом приближенное значение корня и подставим его в правую часть уравнения (2). Получим некоторое число . Повторим данную процедуру с x1, получим . Повторяя описанную процедуру, будем иметь последовательность чисел:

, где n=1,2,…. (2.3)

Пусть у этой последовательности существует предел . Перейдем к пределу в равенстве (2.3). Предполагая функцию φ(х) непрерывной, найдем: или .

Таким образом, предел является корнем уравнения и может быть вычислен по формуле (2.3) с любой степенью точности.

На рисунке дана геометрическая интерпретация метода итераций в зависимости от знака производной функции φ(х).

Рис 2.10 φ'(х) > 0.

Рис.2.11 φ'(х) < 0

Достаточное условие сходимости процесса итераций определяется в следующей теореме.

Теорема 2.3: Пусть функция определена и дифференцируема на отрезке , причем все ее значения . Тогда, если существует правильная дробь q такая, что при , то

  1. процесс итерации (n=1,2,..) сходится независимо от начального значения ;

  2. предельное значение является единственным корнем уравнения на отрезке при .

Для оценки погрешности приближения xn получается формула:

,

где ; а на [a,b] При заданной точности ответа ε итерационный процесс прекращается, если

. Если q<|0.5| , то .

Сходимость итерационной последовательности определяется видом функции φ(х). Преобразование к виду (2.2) можно провести различными способами. Чтобы обеспечить сходимость, можно искать решение в виде

, (2.4)

где k-целое число. Уравнение (2.4) это уравнение (2.1) с . Оно равносильно исходному уравнению (2.1). Для сходимости метода итераций по теореме 2.3 необходимо, чтобы . Дифференцируем φ(х) и получаем . Решаем неравенство:

.

Чтобы условие сходимости выполнялось на всем промежутке [a,b], нужно взять , где .

Итак, если выполняются условия то метод итераций сходится для уравнения

Пример 2.6. Методом итераций найти корень уравнения

на промежутке (-10,-9,6) с четырьмя знаками после запятой.

Находим производную f(x)

По значению производной f(x) выбираем положительное k

В качестве начального приближения выберем левый конец промежутка. Сделаем шесть итераций.

Так как значения производной φ(x) по модулю меньше 0.5, то оцениваем точность вычислений по формуле

Корень уравнения x = -9.98071 найден с точностью 0.000038

Рис. 2.12. Вычисления в Mathcad, реализующие метод итераций для примера 2.6