Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
пособие - с оглавлением.doc
Скачиваний:
77
Добавлен:
23.12.2018
Размер:
4.27 Mб
Скачать

8.7. Квадратурная формула Гаусса

Полиномы вида называются полиномами Лежандра.

Свойства этих полиномов:

  1. , ;

  2. , где - любой полином степени k, меньшей n;

  3. полином Лежандра имеет n различных и действительных корней, которые расположены на интервале .

Первые пять полиномов Лежандра:

Рассмотрим функцию , заданную на стандартном промежутке . Нужно подобрать точки и коэффициенты , чтобы квадратурная формула

(8.14)

была точной для всех полиномов возможной наивысшей степени N. Так как в нашем распоряжении имеются 2n постоянных и , а полином степени 2n-1 определяется 2n коэффициентами, то эта наивысшая степень полинома в общем случае равна N=2n-1.

Для обеспечения равенства (8.14) необходимо и достаточно, чтобы оно было верным при . Действительно, полагая и , будем иметь .

Таким образом, учитывая соотношения , заключаем, что для решения поставленной задачи достаточно определить постоянные и из системы 2n уравнений:

(8.15)

Система (8.15) нелинейная, и ее решение обычным путем представляет большие трудности.

Рассмотрим полиномы , где - полином Лежандра. Т.к. степени этих полиномов не превышают 2n-1, то на основании системы (8.15) для них должны быть справедлива формула (8.14) и .

С другой стороны, в силу свойства ортогональности полиномов Лежандра выполнены неравенства:

при ,

поэтому

(8.16).

Равенства (8.16) будут обеспечены при любых значениях , если положить , т.е. для достижения наивысшей точности квадратурной формулы (8.14) в качестве точек достаточно взять нули соответствующего полинома Лежандра. Как известно, из свойства 3, эти нули действительны, различны и расположены на интервале . Зная абсциссы , легко можно найти из линейной системы первых n уравнений системы (8.15) коэффициенты Аi (i = 1, 2, …, n). Определитель этой подсистемы есть определитель Вандермонда

и, следовательно, определяются однозначно.

Формула (8.14), где - нули полинома Лежандра и определяются из системы (8.15), называется квадратурной формулой Гаусса.

Рассмотрим теперь использование квадратурной формулы Гаусса для вычисления общего интеграла . Делая замену переменной , получим . Применяя к последнему интегралу, квадратурную формулу Гаусса получим:

, (8.16)

где , - нули полинома Лежандра , т.е. .

Остаточный член формулы Гаусса (8.16) с n узлами выражается следующим образом:

.

Отсюда получаем:

,

,

,

,

.

Выведем квадратурную формулу Гаусса для случая трех ординат. Полином Лежандра третьей степени есть

.

Приравнивая этот полином нулю, находим:

, , .

Для определения коэффициентов в силу системы (8.15) имеем:

Отсюда: , .

Следовательно, .

Таблица 8.2

Элементы формулы Гаусса

n

t

ti

Ai

1

1

0

2

2

1;2

±0.57735027

1

3

1;3

2

±0.77459667

0

0.55555556

0.88888889

4

4;1

3;2

±0.86113631

±0.33998104

0.34785484

0.65214516

5

5;1

4;2

3

±0.90617985

±0.53846931

0

0.23692688

0.47862868

0.56888889

6

6;1

5;2

4;3

±0.93246951

±0.66120939

±0.23861919

0.17132450

0.36076158

0.46791394

7

7;1

6;2

5;3

4

±0.94910791

±0.74153119

±0.40584515

0

0.12948496

0.27970540

0.38183006

0.41795918

Пример 8.4 Вычислить интеграл из примера 8.3. по формуле Гаусса для четырех и для пяти точек. Оценить точность вычислений.

Метод Гаусса для 4 точек

Метод Гаусса для 5 точек

В ответе сохраняем шесть верных знаков.

Ответ: 0,423195

Рис. 8.4. Решение примера 8.3 в Mathcad