Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
пособие - с оглавлением.doc
Скачиваний:
77
Добавлен:
23.12.2018
Размер:
4.27 Mб
Скачать

5.5. Интерполяционный многочлен Лагранжа

Для произвольно заданных узлов интерполирования пользуются более общей формулой, так называемой интерполяционной формулой Лагранжа.

Пусть на отрезке даны n+1 различных значений аргумента: , и известны значения для функции . Нам нужно построить многочлен .

Решим сначала частную задачу, построив полином такой, что .

Т.к. искомый полином обращается в нуль в n точках , то он имеет вид:

, ()

где - постоянный коэффициент. Полагая в формуле и учитывая, что , получим:

.

Отсюда .

Вернемся к выражению ():

.

Тогда полином Лагранжа имеет следующий вид:

.

Докажем единственность полинома Лагранжа.

Предположим противное. Пусть - полином, отличный от , степень его не выше n и . Тогда полином , степень которого, очевидно, не выше n, обращается в нуль в n+1 точках , т.е. . Следовательно, .

При равноотстоящих точках таблицы xi многочлен Лагранжа совпадает с многочленом Ньютона такой же степени.

5.5.1. Вычисление лагранжевых коэффициентов

(5.2)

Можно записать лагранжевы коэффициенты и более компактно: , (5.3)

где .

Формула Лагранжа при этом имеет вид .

Для вычисления лагранжевых коэффициентов может быть использована приведенная ниже схема. Сначала располагаем в таблицу разности

Таблица 5.3.

Таблица разностей

Обозначим произведение элементов первой строки через D0, второй – D1 и т.д. Произведение же элементов главной диагонали, очевидно, будет . Отсюда следует, что

.Следовательно,

.

Пример 5.3 Выполнено в Mathcad

Найти приближенное значение функции при данном значении аргумента с помощью интерполяционного многочлена Лангранжа, если функция задана в неравно- отстоящих узлах таблицы.

Рис 5.2. Решения примера 5.3 в Mathcad

Отметим, что форма лагранжевых коэффициентов инвариантна относительно целой линейной подстановки (a,b – постоянны ). Действительно, положив в формуле (5.2):

, , ,

после подстановки и сокращения числителя и знаменателя на an, получим:

или

,

где , что и требовалось доказать.

В случае равноотстоящих точек лагранжевы коэффициенты могут быть приведены к более простому виду.

В самом деле, полагая , будем иметь: . Отсюда

и

.

Тогда ,

где . Отсюда можно записать:

(5.4)

где

Пример 5.4 Выполно в Mathcad.

Найти приближенное значение функции при данном значении аргумента с помощью интерполяционного многочлена Лагранжа, если функция задана в равноотстоящих узлах таблицы

Рис 5.3. Решения примера 5.4 в Mathcad

5.5.2. Схема Эйткина

Пусть требуется найти не общее выражение , а лишь его значения при конкретных x. При этом, значения функции даны в достаточно большом количестве узлов, тогда удобно пользоваться интерполяционной схемой Эйткина. Согласно этой схеме последовательно вычисляются многочлены:

.

Интерполяционный многочлен степени «n», принимающий в точках xi значения , запишется следующим образом:

.

Вычисления по схеме Эйткина удобно расположить в такой таблице:

Таблица 5.4.

Вычисления по схеме Эйткина

Вычисления по схеме Эйткина обычно ведут до тех пор, пока последовательные многочлены и в таблице 5.4 не совпадут в пределах заданной точности.

Пример 5.5 Функция задана таблицей

1.0

1.000

1.1

1.032

1.3

1.091

1.5

1.145

1.6

1.170

Применяя схему Эйткина, найти Составим таблицу 5.4 для примера:

1.0

1.000

-0.15

1.1

1.032

-0.05

1.048

1.3

1.091

0.15

1.047

1.048

1.5

1.145

0.35

1.050

1.6

1.170

0.45

1.057

Значения и совпадают до третьего знака. На этом вычисления можно прекратить и с точностью до 0.001 записать =1.048