
- •1. Виды диэлектрической поляризации.
- •2. Уравнения диэлектрической поляризации. Уравнение Клаузиуса—Мосотти.
- •3. Релаксационные виды поляризации Зависимость диэлектрической проницаемости от различных факторов (температуры и частоты).
- •4. Атомная поляризуемость и поляризуемость смещения. Зависимость диэлектрической проницаемости от частоты для двухатомного ионного кристалла.
- •5. Электропроводность твердых диэлектриков. Токи смещения, абсорбции и сквозной проводимости.
- •3.1.2. Токи смещения, абсорбции и сквозной проводимости
- •6. Зависимость электропроводности диэлектриков от температуры, концентрации носителей зарядов и их подвижности. ТКρ диэлектриков.
- •7. Потери в диэлектриках. Угол диэлектрических потерь δ. Эквивалентные схемы диэлектрика с потерями. Требования, предъявляемые к изоляционным материалам.
- •4.2. Эквивалентные схемы замещения диэлектрика с потерями
- •8.Виды диэлектрических потерь. Механизм релаксационных потерь в диэлектриках.
- •1) Потери на электропроводность;
- •2) Релаксационные потери;
- •3) Ионизационные потери;
- •9. Виды диэлектрических потерь. Диэлектрические потери в газообразных и твердых диэлектриках.
- •13. Сегнетоэлектрики. Температура Кюри.
- •14. Зависимость поляризованности р и диэлектрической проницаемости ε от напряженности электрического поля е сегнетоэлектриков. Петля диэлектрического гистерезиса.
- •15. Применение диэлектрических материалов в микросхемах в качестве пассивных элементов в составе моп транзисторов.
- •Глава 4. Униполярные транзисторы
- •16. Керамические диэлектрические материалы. Конденсаторная, установочная керамика и керамика для подложек микросхем. Требования, предъявляемые к конденсаторной керамике.
- •17. Основы керамической технологии материалов электронной техники.
- •18. Пробой газообразных диэлектриков. Закон Пашена. Пробой газов в неоднородном электрическом поле.
- •19. Электрический и тепловой пробой.
- •5.4.1. Электрический пробой
- •5.4.2. Электротепловой пробой
- •20. Пленочные резистивные материалы. Резисторы. Параметры резисторов. Система обозначений и маркировка резисторов.
- •21. Высокоомные сплавы и их свойства. Удельное сопротивление металлических сплавов.
- •22. Влияние примеси на удельное сопротивление. Влияние размеров проводника на удельное сопротивление. (Пленочные проводники в микросхемах).
- •24. Эффект Холла и Пельтье. Эффект Холла.
- •25. Медь и ее сплавы. Алюминий и его сплавы.
- •26. Магнитомягкие и магнитотвердые материалы. Области их применения
- •15.1.1. Низкочастотные магнитомягкие материалы
- •27. Механизм технического намагничивания и магнитный гистерезис. Основная кривая намагничивания.
- •14.2.4. Причины, приводящие к образованию доменов
- •14.2.5. Механизм технического намагничивания и магнитный гистерезис
- •28. Магнитные потери. Потери на вихревые токи. Потери в катушках индуктивности.
- •29 . Ферриты. Магнитные подрешетки в структурах шпинели, перовскита и граната.
- •30. Магнитных свойств тонких ферритовых пленок. Доменная структура.
- •31. Требования, предъявляемые к свойствам магнитомягких материалов. Магнитные материалы на основе железа.
- •32. Магнитооптические тонкопленочные эффекты. Эффект Фарадея. Феррит-гранаты Поляризация света
- •Феррит-гранаты
- •33. Магнитные свойства и классификация магнитных материалов.
- •Ферромагнетики
- •14.1.4. Антиферромагнетики
- •14.1.5. Ферримагнетики
- •34. Природа ферромагнетизма. Обменное взаимодействие. Магнитная анизотропия.
- •14.2.2. Магнитная анизотропия
- •35. Междолинные переходы. Отрицательное дифференциальное сопротивление. Принцип генерирования свч-колебаний, основанный на использовании эффекта Ганна.
- •36. Основы сверхпроводимости. Лондоновская глубина проникновения, длина когерентности, куперовские пары.
- •37. Выскотемпературные сверхпроводящие материалы. Эффект Джозеффсона. Текстурированная втсп керамика.
- •§ 6.1. Стационарный эффект Джозефсона
- •38. Классификация диэлектрических материалов.
- •7.11. Керамические диэлектрики
- •Конденсаторная керамика
- •39. Коррозионная устойчивость металлов. Применение уравнения изотермы Вант-Гоффа для оценки окисляемости металлов.
5. Электропроводность твердых диэлектриков. Токи смещения, абсорбции и сквозной проводимости.
Идеальный диэлектрик должен иметь бесконечно большое электрическое сопротивление и не должен пропускать электрический ток. Однако диэлектрики, используемые в технике, обладают некоторой электропроводностью (током утечки), и их удельное сопротивление составляет величину, лежащую в пределах от 106 до 1017 Ом•м и выше.
Электропроводность диэлектриков зависит от их химического состава и строения, типа и концентрации дефектов и ионогенной примеси, а также интенсивности воздействия внешнего ионизирующего излучения, напряженности электрического поля, температуры, влажности, давления и т.п. Электропроводность обусловлена наличием свободных и слабо связанных носителей заряда в диэлектрике, а также зарядов, инжектированных в сильных полях из электродов (холодная эмиссия электронов из катода). Эти заряды под действием приложенного постоянного напряжения приобретают направленное движение (дрейф), вызывая тем самым электрический ток. В зависимости от вида заряженных частиц (ионы, электроны и коллоидные частицы) различают ионную, электронную и электрофоретическую проводимости. В слабых электрических полях у газообразных диэлектриков электропроводность ионная и электронная, у жидких — ионная и электрофоретическая, у твердых — ионная.
3.1.1. Электропроводность объемная и поверхностная
Электропроводность диэлектриков имеет две характерные особенности. Первая особенность заключается в том, что при приложении к образцу твердого или жидкого диэлектрика постоянного напряжения через него протекает ток сквозной проводимости (ток утечки) I, который складывается из двух составляющих: тока объемной проводимости Iu и тока поверхностной проводимости Is (рис. 3.1):
I=Iu+Is. (3-1)
Для сравнительной оценки величин токов объемной и поверхностной проводимостей пользуются значениями удельного объемного сопротивления р и удельного поверхностного сопротивления ps или удельной объемной проводимости γ и удельной поверхностной проводимости γs. Значениями γs и ps обычно пользуются только для твердых диэлектриков.
Для плоского образца, находящегося в однородном электрическом поле при постоянном напряжении U (рис. 3.2), удельное объ-
Рис. 3.1. Виды токов проводимости в твердом диэлектрике:
Iu — ток объемной проводимости; Is — ток поверхностной проводимости
Рис. 3.2. Система электродов для определения р и рs диэлектриков:
1 — измерительный электрод;
2 — «кольцевой» электрод, используемый как заземляющий при определении р и как высоковольтный при определении ps;
3 — электрод: высоковольтный при определении р и заземляющий при определении рs;
4 — образец
-емное р (Ом*м) и удельное поверхностное рs (Ом) сопротивления определяются соответственно по формулам:
где R — объемное сопротивление образца, Ом (R = U/Iu); Rs — поверхностное сопротивление образца, Ом (R = U/Is); S — площадь измерительного электрода, м2 (см. рис. 3.2, 7); h — толщина образца, м; d1 — внутренний диаметр «кольцевого» электрода, м; d2 — диаметр измерительного электрода, м.
Удельная объемная γ, См/м (Ом-1м-1), и удельная поверхностная γs, См (Ом-1), проводимости являются величинами, обратными соответствующим удельным сопротивлениям:
(3.3)