Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
536
Добавлен:
04.03.2014
Размер:
7.12 Mб
Скачать

14.1.4. Антиферромагнетики

Антиферромагнетики — это материалы, атомы (ионы) которых обладают магнитным моментом, обусловленным, как у пара- и фер­ромагнетиков, нескомпенсированными спиновыми магнитными мо­ментами электронов. Однако у антиферромагнетиков магнитные мо­менты атомов под действием обменного взаимодействия (у них обменный интеграл отрицательный; см. гл. 14.2.1) приобретают не параллельную ориентацию, как у ферромагнетиков, а антипарал­лельную (противоположную) (см. рис. 14.1, в) и полностью компен­сируют друг друга. Поэтому антиферромагнетики не обладают маг­нитным моментом, и их магнитная восприимчивость km близка по величине к km парамагнетиков. Для антиферромагнетиков, как и для ферромагнетиков, существует определенная температура, назы­ваемая точкой Нееля Тн, при (и выше) которой антиферромагнит­ный порядок разрушается и материал переходит в парамагнитное со­стояние.

К антиферромагнетикам относятся: Mn, Cr, CuO, NiO, FeO, Cr2O3, NiCr, MnO, Mn2O3, MnS, VO2 и довольно большое количество других соединений.

14.1.5. Ферримагнетики

Ферримагнетики имеют доменную структуру, состоящую из двух или более подрешеток, связанных антиферромагнитно (антипарал­лельно). Поскольку подрешетки образованы атомами (ионами) раз­личных химических элементов или неодинаковым их количеством, они имеют различные по величине магнитные моменты, направлен­ные антипараллельно (рис. 14.1, г). В результате появляется отличная от нуля разность магнитных моментов подрешеток, приводящая к спонтанному намагничиванию кристалла.

Таким образом, Ферримагнетики можно рассматривать как не­скомпенсированные антиферромагнетики. Свое название эти материа­лы получили от ферритов — первых нескомпенсированных антифер­ромагнетиков, а магнетизм ферритов назвали ферримагнетизмом. У ферритов доменная структура, как и у ферромагнетиков, образует­ся при температурах ниже точки Кюри. К. ферритам применимы все магнитные характеристики, введенные для ферромагнетиков. В от­личие от ферромагнетиков они имеют меньшую величину индук­ции насыщения, более сложную температурную зависимость индук­ции и в ряде случаев высокое значение удельного сопротивления (ρ= 10─3 —1010 Ом•м).

34. Природа ферромагнетизма. Обменное взаимо­действие. Магнитная анизотропия.

Ферромагнетизм является частным случаем парамагнетизма. У ферромагнетиков, как и у парамагнетиков, магнитные моменты ато­мов (ионов) обусловлены нескомпенсированными в них спиновыми магнитными моментами электронов. Однако у ферромагнетиков в отличие от парамагнетиков магнитные моменты атомов располо­жены не беспорядочно, а в результате обменного взаимодейст­вия (см. ниже гл. 14.2.1) ориентированы параллельно друг другу (рис. 14.1, б) с образованием магнитных доменов.

Ферромагнетизм в металлах объясняется наличием обменноговзаимодействия, которое образуется между соприкасающимися атомами, а также вза­имной ориентацией спиновых магнитных моментов (см. гл. 14.2.1). В ферримагнетиках магнитные моменты ионов ориентиро­ваны антипараллельно и обменное взаи­модействие происходит не непосредствен­но, а через ион кислорода О2─ (рис. 14.3). Такое обменное взаимодействие называют косвенным обменом или сверхобменом. Оно по мере приближения промежуточного угла к 180° усиливается

Принцип косвен­ного обменного взаимодей­ствия

Ферриты представляют собой сложные системы окислов метал­лов с общей химической формулой MeO-Fe2O3, где МеО — окисел двухвалентного металла. Ферриты — это ферримагнитная керамика. Высокое удельное сопротивление практически исключает возникно­вение в ферритах вихревых токов при воздействии на них перемен­ных магнитных полей, что, в свою очередь, позволяет применять ферриты в качестве магнитных материалов в диапазоне радиочастот, включая СВЧ.

В электротехнике в качестве магнитных материалов широкое применение нашли ферромагнитные и ферримагнитные материалы. Диамагнетики и парамагнетики используют в качестве рабочих тел в квантовых парамагнитных усилителях и генераторах (например, ру­бин — это диамагнетик А12О3, содержащий -0,05% парамагнетика Сг).

МАГНИТНЫЕ СВОЙСТВА ФЕРРОМАГНЕТИКОВ, Природа ферромагнетизма

Согласно принципу Паули, в каждом квантовом состоянии могут находиться два электрона с противоположными спинами. У таких электронов результирующая спиновых магнитных моментов равна нулю, и их называют спаренными или обобществленными электрона­ми. В атомах диамагнетиков все электроны спарены, поэтому их ре­зультирующий спиновой магнитный момент равен нулю. В атомах ферро-, антиферро-, ферри- и парамагнетиков имеются один или несколько неспаренных электронов, поэтому они обладают магнит­ным моментом, который обусловлен нескомпенсированным спи­новым магнитным моментом неспаренных электронов (или иначе спиновым магнитным моментом атома). Например, в атомах ферро­магнетиков количество неспаренных электронов равно: у железа 4, кобальта 3 и никеля 2, и их спиновые магнитные моменты располо­жены параллельно друг другу. В атомах антиферромагнетиков коли­чество неспаренных электронов равно: у марганца 5, у хрома 4, и их спиновые магнитные моменты ориентированы антипараллельно. В атомах парамагнетиков, таких, как ванадий, неспаренных электро­нов 3, а титана 2, и их спиновые магнитные моменты ориентирова­ны хаотично.

Таким образом, наличие в атомах электронов с нескомпенсирован­ным спиновым магнитным моментом является важным условием для возникновения ферромагнетизма, но не единственным.

Известно (см. гл. 1.4), что ковалентная связь между двумя сосед­ними атомами (ионами) в атомных кристаллах осуществляется в Результате попарного обобществления их электронов, т.е. когда электронные пары становятся общими для этих двух атомов. Обоб­ществление электронов сопровождается перераспределением элек­тронной плотности и изменением энергии системы. Электронное облако «втягивается» в пространство между ядрами соседних ато­мов, и плотность его в межъядерном пространстве повышается (см. рис. 1.2).

R=0,53 A d=0,74 A

Рис.1.2 Схематическое изображение строение атома и и молекулы водорода.

Образовавшееся в межъядерном пространстве электрон­ное облако повышенной плотности как бы стягивает ядра, стремясь максимально их сблизить. Энергию связи, которая возникает в ре­зультате попарного обобществления электронов, называют обменной, так как считают, что она образовалась в результате якобы обмена электронами между соседними атомами. В действительности энергия обменной связи является электростатической энергией обменного взаимодействия электронной оболочки повышенной плотности с яд­рами, между которыми она образовалась. Обменное взаимодействие имеет квантовую природу, и рассмотрение его с точки зрения клас­сической механики весьма затруднительно.

Силы, под действием которых спиновые магнитные моменты атомов (ионов) ориентируются друг относительно друга параллельно или антипараллельно, возникают в результате обменного взаимодей­ствия. Когда атомы ферромагнетика образуют кристаллическую ре­шетку, их валентные электроны обобществляются, а волновые функ­ции электронов внутренних недостроенных оболочек (3d или 4f) соседних атомов перекрываются, т.е. возникает обменное взаимо­действие электронов внутренних недостроенных оболочек. В резуль­тате изменяется энергия системы, и спиновые магнитные моменты атомов выстраиваются параллельно (ферромагнетик) или антипарал­лельно (антиферромагнетик) друг относительно друга. Приближенно энергию обменного взаимодействия Wобм можно представить сле­дующим выражением:

Wобм=-A (S1S2), (14.7)

где А — обменный интеграл; S1 и S2 — результирующие спиновые магнитные моменты взаимодействующих атомов.

Обменный интеграл А служит мерой энергии обменного взаимо­действия и может быть как положительным, так и отрицательным. Это зависит от отношения a/d, где а — расстояние между атомами (постоянная кристаллической решетки), d — диаметр недостроенной электронной оболочки (3d или 4f), образующей нескомпенсирован­ный спиновый магнитный момент атома. Если отношение a/d мень­ше 1,5, то обменный интеграл А имеет отрицательное значение, и спиновым магнитным моментам атомов энергетически выгодно ори­ентироваться антипараллельно. Если (a/d) > 1,5, то обменный инте­грал имеет положительное значение. В этом случае энергетически выгодно будет параллельная ориентация спиновых магнитных мо­ментов атомов друг относительно друга. В результате возникнет са­мопроизвольная (спонтанная) намагниченность и образуются доме­ны, которые намагничены до насыщения. Зависимость А = y(a/d), приведенная на рис. 14.4, иллюстрирует, что у ферромагнетиков (α-Fe, Co, Ni, Gd) обменный интеграл А положительный, так как от­ношение a/d > 1,5, а у неферромагнетиков (γ-Fe, Mn, Сг) А отрица­тельный, так как отношение a/d < 1,5.

рис. 14.4. Зависимость обменного интегра­ла А от отношения постоянной (a/d) решетки а к диаметру d внутренней недостроенной электронной оболочки

В некоторых случаях, путем внедрения чужеродного атома в кри­сталлическую решетку неферромагнитного материала, можно увели­чить постоянную, решетки а и соответственно отношение a/d станет больше 1,5, в результате возникнет ферромагнетизм. Например, если в металлический марганец ввести небольшое количество азота, то его постоянная решетки а увеличится, и отношение a/d станет боль­ше 1,5, обменный интеграл А примет положительное значение, и марганец проявит ферромагнетизм. Ферромагнетиками являются не­которые сплавы марганца (например, сплавы Гейслера — сплавы системы Mn—Cu—A1, состоящие из неферромагнитных металлов) и некоторые его химические соединения (например, MnSb, MnBi), в которых атомы Мп находятся на расстояниях, больших, чем в чис­том марганце.

Таким образом, ферромагнетизм обусловлен одновременным при­сутствием в материале следующих основных факторов: 1) нескомпен­сированного спинового магнитного момента в атомах (ионах), обу­словленного неспаренными электронами внутренней недостроенной электронной оболочки (3d или 4f); 2) обменного взаимодействия электронов внутренней недостроенной оболочки; 3) величиной отно­шения постоянной решетки а к диаметру внутренней недостроенной электронной оболочки d, участвующей в обменном взаимодействии, большей 1,5.

Явление ферромагнетизма имеет место не только в кристалличе­ских материалах, но и в аморфных. В настоящее время известно большое количество металлов и сплавов, которые в аморфном со­стоянии обладают свойствами ферро- и ферримагнетиков. Отсюда следует, что для возникновения ферро- и ферримагнетизма необ­ходимо наличие лишь ближнего порядка в расположении атомов (ионов).