
- •1. Виды диэлектрической поляризации.
- •2. Уравнения диэлектрической поляризации. Уравнение Клаузиуса—Мосотти.
- •3. Релаксационные виды поляризации Зависимость диэлектрической проницаемости от различных факторов (температуры и частоты).
- •4. Атомная поляризуемость и поляризуемость смещения. Зависимость диэлектрической проницаемости от частоты для двухатомного ионного кристалла.
- •5. Электропроводность твердых диэлектриков. Токи смещения, абсорбции и сквозной проводимости.
- •3.1.2. Токи смещения, абсорбции и сквозной проводимости
- •6. Зависимость электропроводности диэлектриков от температуры, концентрации носителей зарядов и их подвижности. ТКρ диэлектриков.
- •7. Потери в диэлектриках. Угол диэлектрических потерь δ. Эквивалентные схемы диэлектрика с потерями. Требования, предъявляемые к изоляционным материалам.
- •4.2. Эквивалентные схемы замещения диэлектрика с потерями
- •8.Виды диэлектрических потерь. Механизм релаксационных потерь в диэлектриках.
- •1) Потери на электропроводность;
- •2) Релаксационные потери;
- •3) Ионизационные потери;
- •9. Виды диэлектрических потерь. Диэлектрические потери в газообразных и твердых диэлектриках.
- •13. Сегнетоэлектрики. Температура Кюри.
- •14. Зависимость поляризованности р и диэлектрической проницаемости ε от напряженности электрического поля е сегнетоэлектриков. Петля диэлектрического гистерезиса.
- •15. Применение диэлектрических материалов в микросхемах в качестве пассивных элементов в составе моп транзисторов.
- •Глава 4. Униполярные транзисторы
- •16. Керамические диэлектрические материалы. Конденсаторная, установочная керамика и керамика для подложек микросхем. Требования, предъявляемые к конденсаторной керамике.
- •17. Основы керамической технологии материалов электронной техники.
- •18. Пробой газообразных диэлектриков. Закон Пашена. Пробой газов в неоднородном электрическом поле.
- •19. Электрический и тепловой пробой.
- •5.4.1. Электрический пробой
- •5.4.2. Электротепловой пробой
- •20. Пленочные резистивные материалы. Резисторы. Параметры резисторов. Система обозначений и маркировка резисторов.
- •21. Высокоомные сплавы и их свойства. Удельное сопротивление металлических сплавов.
- •22. Влияние примеси на удельное сопротивление. Влияние размеров проводника на удельное сопротивление. (Пленочные проводники в микросхемах).
- •24. Эффект Холла и Пельтье. Эффект Холла.
- •25. Медь и ее сплавы. Алюминий и его сплавы.
- •26. Магнитомягкие и магнитотвердые материалы. Области их применения
- •15.1.1. Низкочастотные магнитомягкие материалы
- •27. Механизм технического намагничивания и магнитный гистерезис. Основная кривая намагничивания.
- •14.2.4. Причины, приводящие к образованию доменов
- •14.2.5. Механизм технического намагничивания и магнитный гистерезис
- •28. Магнитные потери. Потери на вихревые токи. Потери в катушках индуктивности.
- •29 . Ферриты. Магнитные подрешетки в структурах шпинели, перовскита и граната.
- •30. Магнитных свойств тонких ферритовых пленок. Доменная структура.
- •31. Требования, предъявляемые к свойствам магнитомягких материалов. Магнитные материалы на основе железа.
- •32. Магнитооптические тонкопленочные эффекты. Эффект Фарадея. Феррит-гранаты Поляризация света
- •Феррит-гранаты
- •33. Магнитные свойства и классификация магнитных материалов.
- •Ферромагнетики
- •14.1.4. Антиферромагнетики
- •14.1.5. Ферримагнетики
- •34. Природа ферромагнетизма. Обменное взаимодействие. Магнитная анизотропия.
- •14.2.2. Магнитная анизотропия
- •35. Междолинные переходы. Отрицательное дифференциальное сопротивление. Принцип генерирования свч-колебаний, основанный на использовании эффекта Ганна.
- •36. Основы сверхпроводимости. Лондоновская глубина проникновения, длина когерентности, куперовские пары.
- •37. Выскотемпературные сверхпроводящие материалы. Эффект Джозеффсона. Текстурированная втсп керамика.
- •§ 6.1. Стационарный эффект Джозефсона
- •38. Классификация диэлектрических материалов.
- •7.11. Керамические диэлектрики
- •Конденсаторная керамика
- •39. Коррозионная устойчивость металлов. Применение уравнения изотермы Вант-Гоффа для оценки окисляемости металлов.
38. Классификация диэлектрических материалов.
Все диэлектрические материалы имеют молекулярное или ионное строение. Молекулы, в свою очередь, образованы из атомов, атомы и ионы — из электронов и положительно заряженных ядер. При этом суммарный заряд всех отрицательно и положительно заряженных частиц, образующих диэлектрик как молекулярного, так и ионного строения, равен нулю.
Идеальный диэлектрик состоит только из связанных (между собой) заряженных .частиц (свободных зарядов в нем нет). Поэтому электропроводность в идеальном диэлектрике отсутствует. Под действием приложенного электрического поля все связанные заряженные частицы диэлектрика упорядоченно смещаются из своих равновесных состояний только на ограниченные расстояния, а диполи ориентируются по полю; в результате диэлектрик поляризуется — в нем возникает электрический дипольный момент. Упорядоченное смещение заряженных частиц и ориентация диполей, вызванные постоянно изменяющимся электрическим напряжением, приводит к образованию в материале токов смещения (подробнее см. гл. 3.1 и 8.6).
Способность диэлектриков поляризоваться под действием приложенного электрического поля является их фундаментальным свойством-
Поляризация наблюдается также и в полупроводниках, однако для них она не столь важна и характерна.
В металлических проводниках и магнитных материалах поляризация отсутствует.
Диэлектрические материалы используют в электротехнике в основном для создания электрической изоляции, например, у проводов и кабелей, а также для электрической емкости конденсаторов.
Основные электрические характеристики этих материалов — диэлектрическая проницаемость ε, удельное объемное сопротивление ρ, удельное поверхностное сопротивление ρs диэлектрические потери tgδ, электрическая прочность Епр — в конечном счете определяются механизмом и расстоянием смещения связанных заряженных частиц, а также концентрацией и подвижностью свободных зарядов, т.е. поляризацией и электропроводностью, соответственно. Электропроводность и некоторые виды поляризации вызывают диэлектрические потери. По функциям, выполняемым в аппаратуре и приборах, их можно подразделить на электроизоляционные и конденсаторные материалы (пассивные диэлектрики) и управляемые материалы (активные диэлектрики) (рис. 7.1).
Электроизоляционные материалы используют для создания электрической изоляции, которая окружает токоведущие части электрических устройств и отделяет друг от друга элементы схемы или конструкции, находящиеся под различными электрическими потенциалами.
Применение диэлектриков в конденсаторах позволяет получать требуемые значения емкости, а в некоторых случаях обеспечивает определенный характер зависимости этой емкости от внешних факторов. Диэлектрик конденсатора может запасать, а потом отдавать в цепь электрическую энергию (емкостный накопитель). Иногда конденсатор используют для разделения цепей постоянного и переменного токов, для изменения угла фазового сдвига и т. д.
Некоторые диэлектрики применяют как для создания электрической изоляции, так и в качестве конденсаторных материалов (например, слюда, керамика, стекло, полистирольные и другие пленки). Тем не менее, требования к электроизоляционным и конденсаторным материалам существенно различаются. Если от электроизоляционного материала требуется невысокая относительная диэлектрическая проницаемость и большое удельное сопротивление, то диэлектрик конденсатора, наоборот, должен иметь повышенную ε и малое значение tgδ. Роль диэлектрика в конденсаторе также нельзя считать активной, но конденсатор уже является функциональным элементом в электрической схеме.
Конденсаторы с управляемыми (активными) диэлектриками могут быть использованы для усиления сигналов по мощности, создания различных преобразователей, элементов памяти, датчиков ряда физических процессов и генерации колебаний. В классификационной схеме рис. 7.1 управляемые диэлектрики в свою очередь подразделены по принципу управления.