- •1. Виды диэлектрической поляризации.
- •2. Уравнения диэлектрической поляризации. Уравнение Клаузиуса—Мосотти.
- •3. Релаксационные виды поляризации Зависимость диэлектрической проницаемости от различных факторов (температуры и частоты).
- •4. Атомная поляризуемость и поляризуемость смещения. Зависимость диэлектрической проницаемости от частоты для двухатомного ионного кристалла.
- •5. Электропроводность твердых диэлектриков. Токи смещения, абсорбции и сквозной проводимости.
- •3.1.2. Токи смещения, абсорбции и сквозной проводимости
- •6. Зависимость электропроводности диэлектриков от температуры, концентрации носителей зарядов и их подвижности. ТКρ диэлектриков.
- •7. Потери в диэлектриках. Угол диэлектрических потерь δ. Эквивалентные схемы диэлектрика с потерями. Требования, предъявляемые к изоляционным материалам.
- •4.2. Эквивалентные схемы замещения диэлектрика с потерями
- •8.Виды диэлектрических потерь. Механизм релаксационных потерь в диэлектриках.
- •1) Потери на электропроводность;
- •2) Релаксационные потери;
- •3) Ионизационные потери;
- •9. Виды диэлектрических потерь. Диэлектрические потери в газообразных и твердых диэлектриках.
- •13. Сегнетоэлектрики. Температура Кюри.
- •14. Зависимость поляризованности р и диэлектрической проницаемости ε от напряженности электрического поля е сегнетоэлектриков. Петля диэлектрического гистерезиса.
- •15. Применение диэлектрических материалов в микросхемах в качестве пассивных элементов в составе моп транзисторов.
- •Глава 4. Униполярные транзисторы
- •16. Керамические диэлектрические материалы. Конденсаторная, установочная керамика и керамика для подложек микросхем. Требования, предъявляемые к конденсаторной керамике.
- •17. Основы керамической технологии материалов электронной техники.
- •18. Пробой газообразных диэлектриков. Закон Пашена. Пробой газов в неоднородном электрическом поле.
- •19. Электрический и тепловой пробой.
- •5.4.1. Электрический пробой
- •5.4.2. Электротепловой пробой
- •20. Пленочные резистивные материалы. Резисторы. Параметры резисторов. Система обозначений и маркировка резисторов.
- •21. Высокоомные сплавы и их свойства. Удельное сопротивление металлических сплавов.
- •22. Влияние примеси на удельное сопротивление. Влияние размеров проводника на удельное сопротивление. (Пленочные проводники в микросхемах).
- •24. Эффект Холла и Пельтье. Эффект Холла.
- •25. Медь и ее сплавы. Алюминий и его сплавы.
- •26. Магнитомягкие и магнитотвердые материалы. Области их применения
- •15.1.1. Низкочастотные магнитомягкие материалы
- •27. Механизм технического намагничивания и магнитный гистерезис. Основная кривая намагничивания.
- •14.2.4. Причины, приводящие к образованию доменов
- •14.2.5. Механизм технического намагничивания и магнитный гистерезис
- •28. Магнитные потери. Потери на вихревые токи. Потери в катушках индуктивности.
- •29 . Ферриты. Магнитные подрешетки в структурах шпинели, перовскита и граната.
- •30. Магнитных свойств тонких ферритовых пленок. Доменная структура.
- •31. Требования, предъявляемые к свойствам магнитомягких материалов. Магнитные материалы на основе железа.
- •32. Магнитооптические тонкопленочные эффекты. Эффект Фарадея. Феррит-гранаты Поляризация света
- •Феррит-гранаты
- •33. Магнитные свойства и классификация магнитных материалов.
- •Ферромагнетики
- •14.1.4. Антиферромагнетики
- •14.1.5. Ферримагнетики
- •34. Природа ферромагнетизма. Обменное взаимодействие. Магнитная анизотропия.
- •14.2.2. Магнитная анизотропия
- •35. Междолинные переходы. Отрицательное дифференциальное сопротивление. Принцип генерирования свч-колебаний, основанный на использовании эффекта Ганна.
- •36. Основы сверхпроводимости. Лондоновская глубина проникновения, длина когерентности, куперовские пары.
- •37. Выскотемпературные сверхпроводящие материалы. Эффект Джозеффсона. Текстурированная втсп керамика.
- •§ 6.1. Стационарный эффект Джозефсона
- •38. Классификация диэлектрических материалов.
- •7.11. Керамические диэлектрики
- •Конденсаторная керамика
- •39. Коррозионная устойчивость металлов. Применение уравнения изотермы Вант-Гоффа для оценки окисляемости металлов.
Ферромагнетики
Ф
ерромагнетизмявляется
частным случаем парамагнетизма.
У ферромагнетиков,
как и у парамагнетиков, магнитные моменты
атомов (ионов) обусловлены
нескомпенсированными в них спиновыми
магнитными
моментами электронов. Однако у
ферромагнетиков в
отличие от парамагнетиков магнитные
моменты атомов расположены
не беспорядочно, а в результате обменного
взаимодействия
(см. ниже гл. 14.2.1) ориентированы параллельно
друг другу (рис.
14.1, б)
с
образованием магнитных доменов.
Магнитные домены представляют собой элементарные объемы ферромагнетиков, находящиеся в состоянии магнитного насыщения. В домене нескомпенсированные спиновые магнитные моменты электронов всех атомов выстроены параллельно друг другу. Доменная структура образуется в отсутствие внешнего магнитного поля в результате самопроизвольной (спонтанной) намагниченности, которая происходит при температурах ниже некоторой так называемой точкой Кюри Тк. Для чистого железа Тк = 768°С, никеля Тк = 358°С, кобальта T=1131 С. Разбивка всего объема ферромагнетика на множество доменов энергетически выгодна. В отсутствие внешнего магнитного поля магнитные моменты доменов направлены так, что их результирующий магнитный момент равен или близок нулю. Домены имеют размеры около 0,001 — 10 мм3 при толщине пограничных слоев между ними (границ) в несколько десятков ангстрем. В доменных границах происходит постепенное изменение направления вектора намагниченности от одного домена к направлению вектора намагниченности в соседнем домене.
Характерная особенность ферромагнетиков — их доменное строение, которое и обусловливает специфику магнитных свойств: магнитное насыщение, гистерезис, магнитострикцию и др.
Магнитная восприимчивость km и магнитная проницаемость μ и
ферромагнетиков имеют большие положительные значения (до 106)
и сильно зависят от напряженности внешнего магнитного поля и
температуры. Ферромагнетики легко намагничиваются уже в слабых магнитных полях.
В отсутствие внешнего магнитного поля направления векторов намагниченности различных доменов не совпадают, и результирующая намагниченности всего образца ферромагнетика равна или близка нулю. При приложении магнитного поля магнитные моменты доменов начнут ориентироваться по полю, а границы между доменами смещаются, в результате образец намагничивается. Это намагничивание называют техническим намагничиванием и его необходимо отличать от спонтанного намагничивания, которое всегда присутствует внутри доменов. При нагревании ферромагнетика его магнитная проницаемость возрастает, так как облегчаются процессы смещения доменных границ. При температуре, равной и выше Тк, интенсивное тепловое движение ионов, находящихся в узлах кристаллической решетки, начнет изменять параметры этой решетки, в
Р
ис.14.2-
Зависимость магнитной проницаемости
μ ферромагнетиков
от температуры
Т:
Тк — точка
Кюри
TKμ = αμ = 1/μ •dμ/dT (14.6)
результате разрушится спонтанная намагниченность, домены перестанут существовать — материал перейдет из ферромагнитного состояния в парамагнитное (некоторые редкоземельные элементы переходят в антиферромагнитное состояние), и величина μ приблизится к единице (рис. 14.2). Для характеристики изменения магнитной проницаемости μ при изменении температуры на один Кельвин пользуются температурным коэффициентом магнитной проницаемости ТКμ, К─1: магнитной проницаемости μ
К ферромагнетикам относятся три переходных металла (железо Fe, кобальт Со и никель Ni), имеющих недостроенную 3d-электронную оболочку, и сплавы на их основе; шесть редкоземельных металлических элементов (гадолиний Gd, тербий Тb, диспрозий Dy, гольмий Но, эрбий Еr и тулий Tm, имеющих недостроенную 4f-электронную оболочку и очень низкие значения Тк (табл. 14.2), что затрудняет их практическое применение; сплавы системы Мn—Сu—А1 (сплавы Гейслера) и соединения MnSb, MnBi и др., в которых атомы марганца находятся на расстояниях, больших, чем в решетке кристалла чистого марганца (см. гл. 14.2.1)
