
- •1. Виды диэлектрической поляризации.
- •2. Уравнения диэлектрической поляризации. Уравнение Клаузиуса—Мосотти.
- •3. Релаксационные виды поляризации Зависимость диэлектрической проницаемости от различных факторов (температуры и частоты).
- •4. Атомная поляризуемость и поляризуемость смещения. Зависимость диэлектрической проницаемости от частоты для двухатомного ионного кристалла.
- •5. Электропроводность твердых диэлектриков. Токи смещения, абсорбции и сквозной проводимости.
- •3.1.2. Токи смещения, абсорбции и сквозной проводимости
- •6. Зависимость электропроводности диэлектриков от температуры, концентрации носителей зарядов и их подвижности. ТКρ диэлектриков.
- •7. Потери в диэлектриках. Угол диэлектрических потерь δ. Эквивалентные схемы диэлектрика с потерями. Требования, предъявляемые к изоляционным материалам.
- •4.2. Эквивалентные схемы замещения диэлектрика с потерями
- •8.Виды диэлектрических потерь. Механизм релаксационных потерь в диэлектриках.
- •1) Потери на электропроводность;
- •2) Релаксационные потери;
- •3) Ионизационные потери;
- •9. Виды диэлектрических потерь. Диэлектрические потери в газообразных и твердых диэлектриках.
- •13. Сегнетоэлектрики. Температура Кюри.
- •14. Зависимость поляризованности р и диэлектрической проницаемости ε от напряженности электрического поля е сегнетоэлектриков. Петля диэлектрического гистерезиса.
- •15. Применение диэлектрических материалов в микросхемах в качестве пассивных элементов в составе моп транзисторов.
- •Глава 4. Униполярные транзисторы
- •16. Керамические диэлектрические материалы. Конденсаторная, установочная керамика и керамика для подложек микросхем. Требования, предъявляемые к конденсаторной керамике.
- •17. Основы керамической технологии материалов электронной техники.
- •18. Пробой газообразных диэлектриков. Закон Пашена. Пробой газов в неоднородном электрическом поле.
- •19. Электрический и тепловой пробой.
- •5.4.1. Электрический пробой
- •5.4.2. Электротепловой пробой
- •20. Пленочные резистивные материалы. Резисторы. Параметры резисторов. Система обозначений и маркировка резисторов.
- •21. Высокоомные сплавы и их свойства. Удельное сопротивление металлических сплавов.
- •22. Влияние примеси на удельное сопротивление. Влияние размеров проводника на удельное сопротивление. (Пленочные проводники в микросхемах).
- •24. Эффект Холла и Пельтье. Эффект Холла.
- •25. Медь и ее сплавы. Алюминий и его сплавы.
- •26. Магнитомягкие и магнитотвердые материалы. Области их применения
- •15.1.1. Низкочастотные магнитомягкие материалы
- •27. Механизм технического намагничивания и магнитный гистерезис. Основная кривая намагничивания.
- •14.2.4. Причины, приводящие к образованию доменов
- •14.2.5. Механизм технического намагничивания и магнитный гистерезис
- •28. Магнитные потери. Потери на вихревые токи. Потери в катушках индуктивности.
- •29 . Ферриты. Магнитные подрешетки в структурах шпинели, перовскита и граната.
- •30. Магнитных свойств тонких ферритовых пленок. Доменная структура.
- •31. Требования, предъявляемые к свойствам магнитомягких материалов. Магнитные материалы на основе железа.
- •32. Магнитооптические тонкопленочные эффекты. Эффект Фарадея. Феррит-гранаты Поляризация света
- •Феррит-гранаты
- •33. Магнитные свойства и классификация магнитных материалов.
- •Ферромагнетики
- •14.1.4. Антиферромагнетики
- •14.1.5. Ферримагнетики
- •34. Природа ферромагнетизма. Обменное взаимодействие. Магнитная анизотропия.
- •14.2.2. Магнитная анизотропия
- •35. Междолинные переходы. Отрицательное дифференциальное сопротивление. Принцип генерирования свч-колебаний, основанный на использовании эффекта Ганна.
- •36. Основы сверхпроводимости. Лондоновская глубина проникновения, длина когерентности, куперовские пары.
- •37. Выскотемпературные сверхпроводящие материалы. Эффект Джозеффсона. Текстурированная втсп керамика.
- •§ 6.1. Стационарный эффект Джозефсона
- •38. Классификация диэлектрических материалов.
- •7.11. Керамические диэлектрики
- •Конденсаторная керамика
- •39. Коррозионная устойчивость металлов. Применение уравнения изотермы Вант-Гоффа для оценки окисляемости металлов.
28. Магнитные потери. Потери на вихревые токи. Потери в катушках индуктивности.
Процесс перемагничивания магнитных материалов в переменном поле связан с потерями части мощности магнитного поля. Эту мощность, поглощаемую единицей массы магнитного материала и рассеиваемую в виде тепла, называют удельными магнитными потерями Р, которые, в свою очередь, складываются из потерь на гистерезис и динамические потери. Динамические потери вызываются прежде всего вихревыми токами и частично магнитным последействием (магнитной вязкостью).
Потери на гистерезис связаны с явлением магнитного гистерезиса и с необратимым перемещением доменных границ. Для каждого материала они пропорциональны площади петли гистерезиса и частоте переменного магнитного поля. Мощность потерь РГ, Вт/кг, расходуемая на гистерезис единицей массы материала, определяется формулой
Рг = η ƒ (Bм )n, (14.14)
где η— коэффициент, зависящий от природы материала; Вм — максимальная магнитная индукция в течение цикла; n — показатель степени, имеющий значение в зависимости от В в пределах от 1,6 до 2; ƒ— частота.
Чтобы уменьшить потери на гистерезис, используют магнитные материалы с возможно малой коэрцитивной силой (узкой петлей гистерезиса). Для этого путем отжига снимают внутренние напряжения, уменьшают число дислокаций и других дефектов и укрупняют зерно.
Потери на вихревые токи обусловлены электрическими токами, которые индуцируют в материале магнитный поток. Эти потери зависят от электрического сопротивления магнитного материала и формы сердечника. Чем больше удельное электрическое сопротивление магнитного материала, тем меньше потери на вихревые токи. Потери на вихревые токи пропорциональны квадрату частоты, поэтому на высоких частотах магнитные материалы с низким электрическим сопротивлением не применяют. Мощность потерь Рвт, Вт/кг, расходуемая на вихревые токи единицей массы, в общем виде определяется формулой
Рвт= ξ ƒ 2 (Bм ) 2, (14.15)
где ξ — коэффициент, зависящий от природы магнитного материала (в частности, от его удельного сопротивления ), а также его формы.
Для листовых образцов магнитного материала Рвт равна, кг/Вт:
Рвт = 1,64 h2 ƒ 2 (Bм ) 2/ dρ (14.16)
где Вм — максимальная магнитная индукция в течение цикла, Тл;ƒ— частота переменного тока, Гц; h — толщина листа, м; ρ — удельное электрическое сопротивление, Ом•м; d — плотность материала, кг/м3.
Поскольку величина Рвт зависит от квадрата частоты, на высоких частотах в первую очередь необходимо учитывать потери на вихревые токи. Для борьбы с вихревыми токами увеличивают электрическое сопротивление сердечников (магнитопроводов). Для этого их собирают из отдельных, электроизолированных друг от друга листов ферромагнетика с относительно высоким удельным сопротивлением или прессуют магнитный материал, находящийся в порошкообразном виде, с диэлектриком так, чтобы отдельные частицы ферромагнетика были разделены друг от друга прослойкой из диэлектрика (магнитодиэлектрики), или используют ферриты — ферримагнитную керамику, имеющую высокое удельное сопротивление — сопротивление того же порядка, что у полупроводников и диэлектриков. Ферриты представляют собой твердые растворы окисла железа с окислами некоторых двухвалентных металлов с общей формулой MeO•Fe2О3.
При уменьшении толщины листового металлического магнитного материала потери на вихревые токи снижаются, однако возрастают потери на гистерезис, так как при уменьшении толщины листа измельчается зерно и, следовательно, увеличивается коэрцитивная сила.С увеличением частоты потери на вихревые токи возрастают более интенсивно, чем потери на гистерезис (сравните формулы (14.14) и (14.15)), и при какой-то частоте начнут преобладать над потерями, вызванными гистерезисом.
Таким образом, толщина листового магнитного материала непосредственно зависит от частоты переменного тока, при которой работает изделие, и каждой частоте соответствует определенная толщина листа, при которой полные магнитные потери минимальны.
Потери, вызванные магнитным последействием (магнитной вязкостью), — это свойство магнитных материалов проявлять зависимость запаздывания изменения индукции, происходящее под действием изменяющегося магнитного поля, от длительности воздействия этого поля. Эти потери обусловлены в первую очередь инерционностью процессов перемагничивания доменов. С уменьшением длительности приложения магнитного поля запаздывание и, следовательно, магнитные потери, вызванные магнитным последействием, увеличиваются, поэтому их необходимо учитывать при использовании магнитных материалов в импульсном режиме работы.
Мощность потерь Рмп, вызванную магнитным последействием, нельзя рассчитать аналитически. Она определяется как разность между удельными магнитными потерями Р и суммой потерь на гистерезис Рт и вихревые токи Рт:
Рмп = Р - (Рг +Рвт). (14.16)
При перемагничивании в переменном поле имеет место отставание по фазе магнитной индукции от напряженности магнитного поля. Происходит это в результате действия вихревых токов, препятствующих, в соответствии с законом Ленца, изменению магнитной индукции, а также из-за гистерезисных явлений и магнитного последействия. Угол отставания называют углом магнитных потерь и обозначают δм. Для характеристики динамических свойств магнитных материалов используют тангенс угла магнитных потерь tg δм. На рис. 14.12 представлена эквивалентная последовательная схема замещения и векторная диаграмма тороидальной катушки индуктивности с сердечником из магнитного материала. Активное сопротивление r1, эквивалентно всем видам магнитных потерь, потерям в обмотке и
Рис.
14.12. Эквивалентная схема замещения и
векторная диаграмма катушки индуктивности
с магнитным сердечникомэлектрической
изоляции. Если пренебречь сопротивлением
обмотки катушки
и ее собственной емкостью, то из векторной
диаграммы получим
tg δм = r1 / ω L = 1/Q (14.17)
где ω — угловая частота; L — индуктивность катушки; Q - добротность катушки с испытуемым магнитным материалом.
Уравнение (14.17) показывает, что тангенс угла магнитных потерь является величиной, обратной добротности катушки.
Индукцию, возникающую в магнитном материале под действием магнитного поля, можно представить в виде двух составляющих: одна совпадает по фазе с напряженностью поля Bм1 = Bм•cosδ, другая отстает на 90° от напряженности поля и равна Вм1 = Вм•sinδ. При этом Вм1 связана с обратимыми процессами превращения энергии при перемагничивании, а Вм2 — с необратимыми. Для характеристики магнитных свойств материалов, применяемых в цепях переменного тока, наряду с другими характеристиками, используют комплексную магнитную проницаемость μ., которая равна
Μ = μ/ - jμ//, (14.18)
где j — мнимая единица (j = √-l); μ/ — вещественная часть, или упругая магнитная проницаемость
μ// — мнимая часть, или вязкая магнитная проницаемость, или проницаемость потерь
Отношение μ// / μ/ является тангенсом угла магнитных потерь tgδм
tgδм= μ// /μ/ (14.21)