Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
591
Добавлен:
04.03.2014
Размер:
7.12 Mб
Скачать

14.2.5. Механизм технического намагничивания и магнитный гистерезис

Процесс технического намагничивания магнитного материала сопровождается изменением его доменной структуры. В размагни­ченном образце направления спонтанной намагниченности доменов совпадают с осями легкого намагничивания. При приложении маг­нитного поля самым выгодным направлением технической намагни­ченности домена будет та его ось легкого намагничивания, которая составляет наименьший угол с направлением внешнего магнитного поля.

Основная кривая намагничивания. Важнейшей характеристикой ферромагнетиков является основная кривая намагничивания, описы­вающая зависимость намагниченности М или магнитной индукции В от напряженности магнитного поля Н для предварительного раз­магниченного образца, а также зависимость магнитной проницаемо­сти μ от напряженности магнитного поля Н и предельная петля маг­нитного гистерезиса.

Рис. 14.7. Основная кривая намаг­ничивания (зависимость В от Н) и зависимость магнитной проницае­мости μ от напряженности магнит­ного поля Н

На рис. 14.7 представлены кривые зависимости В и (μ от напря­женности магнитного поля Н для образца ферромагнетика предвари­тельно размагниченного. На кривых этих зависимостей можно выде­лить четыре характерных участка.

I участок — это область самых слабых магнитных полей (H→ 0) — характеризуется линейной зависимостью B от H и посто­янным значением μ. На этом участке происходит увеличение объема (рост) тех доменов, векторы намагниченности которых имеют наи­меньшие углы с направлением внешнего магнитного поля; их рост происходит за счет доменов, у которых эти углы наибольшие. Рост доменов происходит путем обратимого смещения их границ. Поэто­му процесс намагничивания на этом участке называют процессом об­ратимого смещения границ доменов. На этом участке суммарная на­магниченность образца становится отличной от нуля, и материал характеризуется начальной магнитной проницаемостью μн которую экспериментально определяют в полях с Н ≈ 0,1 А/м. Величина μн является удобной характеристикой материала сердечников высоко­частотных катушек индуктивности, работающих, как правило, в по­лях с невысокой напряженностью. После снятия внешнего магнит­ного поля границы доменов снова возвращаются в прежнее положение, поэтому остаточная намагниченность не возникает.

II участок — область слабых магнитных полей — характеризуется крутым подъемом В и μ при увеличении Н. В конце этого участка магнитная проницаемость проходит через максимум и представляет собой максимальную магнитную проницаемость μм. Величина μм явля­ется удобной характеристикой материала сердечников реле, дроссе­лей, трансформаторов и др., работающих в полях повышенной напряженности (конец II— начало III участка). На этом участке гра­ницы доменов перемещаются на большие расстояния, а сам процесс перемещения границ доменов необратим, т. е. после снятия внешне­го магнитного поля доменная структура не возвращается в исходное состояние, и образец сохраняет какую-то техническую намагничен­ность. Поэтому процесс намагничивания на этом участке называют процессом необратимого смещения границ доменов. Переориентация спиновых магнитных моментов внутри доменов происходит не постепенно, а скачкообразно. К концу этого участка границы доменов исчезают, и образец превращается в однодоменный, вектор намагни­ченности которого совпадает с направлением легкого намагничива­ния и составляет наименьший угол с направлением внешнего маг­нитного поля.

III участок — область средних полей — характеризуется неболь­шим увеличением В и значительным уменьшением μ. Процесс на­магничивания на этом участке заключается в постепенном повороте вектора намагниченности образца до полного совпадения с направ­лением внешнего магнитного поля Н, поэтому его называют процес­сом вращения вектора намагниченности. В конце этого участка при Н = Hs намагниченность М материала достигает значения намагни­ченности технического насыщения Ms (M → Ms или, можно сказать, что магнитная индукция В материала достигает значения индукции технического насыщения Bs(B → Вs). Магнитная проницаемость μ на этом участке значительно снижается, так как напряженность поля Н увеличивается, а магнитная индукция В изменяется незначительно [μ = B/( μoH); см. формулы (14.4) и (14.5)].

IVучасток — область сильных магнитных полей — характеризу­ется незначительным возрастанием индукции В с увеличением на­пряженности магнитного поля Н и приближением значения магнит­ной проницаемости μ к единице. Незначительное увеличение магнитной индукции В на этом участке происходит в результате парапроцесса, который заключается в гашении сильным полем дезори­ентирующего действия теплового поля. Абсолютно строгую ориента­цию всех спиновых магнитных моментов атомов внутри домена можно получить только при температуре абсолютного нуля, когда отсутствует дезориентирующее действие теплового движения. По мере повышения температуры, дезориентация спиновых магнитных моментов атомов возрастает. Дезориентирующее действие теплового движения компенсируется ориентирующим действием внешнего магнитного поля. В этом и заключается парапроцесс. Парапроцесс имеет место и в слабых полях, но здесь он перекрывается процесса­ми смещения и вращения. В сильных полях, когда индукция В дос­тигла значения индукции технического насыщения Bs (В = Bs), парапроцесс проявляется более отчетливо.

В реальных ферро- и ферримагнетиках различные виды процес­сов намагничивания накладываются друг на друга. На процесс на­магничивания, кроме того, влияют магнитострикция, механические напряжения, дефекты структуры и ряд других причин.

Магнитный гистерезис. Если предварительно размагниченный об­разец подвергнуть намагничиванию до состояния технического на­сыщения, то с увеличением напряженности магнитного поля Н маг­нитная индукция В будет изменяться в соответствии с кривой ОАБ рис. 14.8 и в точке А при Н = Hs достигнет значения индукции техни­ческого насыщения, или индукции насыщения Bs (см. рис. 14.7). Отре­зок АБ является безгистерезисной частью зависимости В(Н). При уменьшении напряженности поля Н намагниченность образцауменьшается по кривой БАВr , и при Н = 0 индукция В не будет равна нулю. Эта индукция называется остаточной и обозначается Вr; с ней связано существование постоянных магнитов.

Остаточная индукция (остаточная намагниченность) обусловлена тем, что при размагничивании, когда H = 0, магнитные моменты доменов оказываются ориентиро­ванными вдоль оси легкого намагничивания, направление которой близко к направ­лению внешнего поля.

Для достижения полного размагничивания образца к нему не­обходимо приложить поле определенной напряженности и проти­воположное по знаку. Напряженность такого поля называют коэр­цитивной силой Нс. При дальнейшем возрастании отрицательного поля индукция тоже становится отрицательной и в точке А' при B = — Bs, достигает значения индукции технического насыщения (В = — Bs). После уменьшения отрицательного поля, а затем увели­чения положительного поля кривая перемагничивания опишет пет­лю, называемую предельной петлей магнитного гистерезиса, которая является важной технической характеристикой магнитных мате­риалов.

Таким образом, предельная петля магнитного гистерезиса — это кривая изменения магнитной индукции при изменении внешнего магнитного поля от +Hs до —Hs, и обратно. Пользуясь предельной петлей магнитного гистерезиса, можно определить основные пара­метры материала: коэрцитивную силу Hс, индукцию насыщения Bs остаточную индукцию Вг и др. Площадь этой петли пропорциональ­на работе, затрачиваемой на перемагничивание образца за один цикл; она пропорциональна потерям на гистерезис (см. гл. 14.2.7.). Из рис. 14.8 видно, что в координатах В(Н) при H< Hs (или В < Вs) проявляется целое семейство петель магнитного гистерезиса, заклю­ченных одна в другую.

Рис.14.8.Предельная петля магнитного магнитного гистерезиса

Поскольку ферримагнетики также обладают доменной структу­рой, поэтому рассмотренные процессы намагничивания и размаг­ничивания (см. рис. 14.7 и 14.8) происходят в них аналогичным об­разом.

Коэрцитивная сила Нс является важной технической характери­стикой магнитных материалов и как магнитная проницаемость μ зависит от суммарной удельной поверхности зерен, магнитной ани­зотропии, магнитострикции, механических напряжений, наличия примеси и других дефектов. Чем больше значения этих величин и меньше однородность структуры, тем больше Hс и меньше μ. Объ­ясняется это тем, что поверхность зерен более дефектна, имеет бо­лее высокие внутренние напряжения кристаллической решетки, чем само зерно. Внутренние напряжения и дефекты при намагни­чивании препятствуют росту доменов и ориентации их магнитных моментов в направлении поля. В результате Hс возрастает, а μ сни­жается. С уменьшением размера зерен их суммарная удельная по­верхность возрастает. Величину суммарной удельной поверхности зерен можно изменять механической и термической обработкой материалов. Материал, подвергнутый закалке или холодной дефор­мации (прокатке, волочению и т.п.), образует мелкозернистую структуру, которая обладает большой суммарной удельной поверх­ностью зерен и соответственно большой Hс и малой μ. Материал, подвергнутый отжигу, наоборот, образует крупнозернистую струк­туру с небольшой суммарной удельной поверхностью зерен и соот­ветственно с небольшой Hс и с высокой μ. Коэрцитивная сила листового ферромагнетика также увеличивается при уменьшении его толщины h (рис. 14.9), так как при уменьшении толщины h из­мельчается зерно и увеличивается суммарная удельная поверхность зерен.

Таким образом, если точка Кюри и индукция насыщения зависят только от химического состава магнитных материалов, то такие ха­рактеристики, как коэрцитивная сила Hс, магнитная проницаемость μ и площадь петли гистерезиса, являются структурночувствительными. Поэтому чем больше размер зерна (меньше суммарная удельная поверхность зерен) и более совершенна структура кристаллической решетки (меньше дислокаций, внутренних напряжений, примесей и других дефектов), тем меньше Яс и больше ц, а материал соответст­венно легче намагничивается и перемагничивается.

По величине коэрцитивной силы магнитные материалы разделя­ют на магнитомягкие и магнитотвердые. Граница этого раздела по значению Hс условная. Материалы, у которых Hс < 4 кА/м, отно­сят к магнитомягким, у которых Hс > 4 кА/м — к магнитотвердым (ГОСТ 19693—74). Для магнитомягких материалов характерным яв­ляется малое значение коэрцитивной силы; у промышленных образ­цов наименьшая Hс = 0,4 А/м. Поэтому они намагничиваются до ин­дукции технического насыщения при невысоких напряженностях поля. Намагничивание происходит в основном за счет смещения до­менных границ. У магнитомягких материалов высокая магнитная

475

проницаемость, малые потери на перемагничивание и узкая петля гистерезиса при высоких значениях магнитной индукции. Это легко­намагничивающиеся материалы. Магнитомягкие материалы приме­няют в производстве сердечников катушек индуктивности, реле трансформаторов, электрических машин и т. п., работающих в по­стоянном и переменном магнитных полях.

Для магнитотвердых материалов характерным является широкая петля гистерезиса с большой коэрцитивной силой; у промышленных образцов наибольшая Hс≈800 кА/м. Магнитная проницаемость μ у них меньше, чем у магнитомягких материалов. У магнитотвердых материалов большая максимальная удельная магнитная энергия Wm которая пропорциональна произведению наибольших значений В и H на кривой размагничивания (см. гл. 15.2, формулу (15.7)). Намагничиваются они с трудом, но зато длительное время сохраня­ют сообщенную энергию. Намагничивание происходит в основном за счет вращения вектора намагниченности. Применяют магнитотвердые материалы для производства постоянных магнитов, в элек­трических машинах малой мощности, для записи и хранения цифро­вой, звуковой и видеоинформации и др.

Термины «магнитомягкие» и «магнитотвердые» не являются ха­рактеристикой механических свойств материалов. Существуют меха­нически мягкие, но магнитотвердые материалы и, наоборот, механи­чески твердые, но магнитомягкие материалы.