
- •1. Виды диэлектрической поляризации.
- •2. Уравнения диэлектрической поляризации. Уравнение Клаузиуса—Мосотти.
- •3. Релаксационные виды поляризации Зависимость диэлектрической проницаемости от различных факторов (температуры и частоты).
- •4. Атомная поляризуемость и поляризуемость смещения. Зависимость диэлектрической проницаемости от частоты для двухатомного ионного кристалла.
- •5. Электропроводность твердых диэлектриков. Токи смещения, абсорбции и сквозной проводимости.
- •3.1.2. Токи смещения, абсорбции и сквозной проводимости
- •6. Зависимость электропроводности диэлектриков от температуры, концентрации носителей зарядов и их подвижности. ТКρ диэлектриков.
- •7. Потери в диэлектриках. Угол диэлектрических потерь δ. Эквивалентные схемы диэлектрика с потерями. Требования, предъявляемые к изоляционным материалам.
- •4.2. Эквивалентные схемы замещения диэлектрика с потерями
- •8.Виды диэлектрических потерь. Механизм релаксационных потерь в диэлектриках.
- •1) Потери на электропроводность;
- •2) Релаксационные потери;
- •3) Ионизационные потери;
- •9. Виды диэлектрических потерь. Диэлектрические потери в газообразных и твердых диэлектриках.
- •13. Сегнетоэлектрики. Температура Кюри.
- •14. Зависимость поляризованности р и диэлектрической проницаемости ε от напряженности электрического поля е сегнетоэлектриков. Петля диэлектрического гистерезиса.
- •15. Применение диэлектрических материалов в микросхемах в качестве пассивных элементов в составе моп транзисторов.
- •Глава 4. Униполярные транзисторы
- •16. Керамические диэлектрические материалы. Конденсаторная, установочная керамика и керамика для подложек микросхем. Требования, предъявляемые к конденсаторной керамике.
- •17. Основы керамической технологии материалов электронной техники.
- •18. Пробой газообразных диэлектриков. Закон Пашена. Пробой газов в неоднородном электрическом поле.
- •19. Электрический и тепловой пробой.
- •5.4.1. Электрический пробой
- •5.4.2. Электротепловой пробой
- •20. Пленочные резистивные материалы. Резисторы. Параметры резисторов. Система обозначений и маркировка резисторов.
- •21. Высокоомные сплавы и их свойства. Удельное сопротивление металлических сплавов.
- •22. Влияние примеси на удельное сопротивление. Влияние размеров проводника на удельное сопротивление. (Пленочные проводники в микросхемах).
- •24. Эффект Холла и Пельтье. Эффект Холла.
- •25. Медь и ее сплавы. Алюминий и его сплавы.
- •26. Магнитомягкие и магнитотвердые материалы. Области их применения
- •15.1.1. Низкочастотные магнитомягкие материалы
- •27. Механизм технического намагничивания и магнитный гистерезис. Основная кривая намагничивания.
- •14.2.4. Причины, приводящие к образованию доменов
- •14.2.5. Механизм технического намагничивания и магнитный гистерезис
- •28. Магнитные потери. Потери на вихревые токи. Потери в катушках индуктивности.
- •29 . Ферриты. Магнитные подрешетки в структурах шпинели, перовскита и граната.
- •30. Магнитных свойств тонких ферритовых пленок. Доменная структура.
- •31. Требования, предъявляемые к свойствам магнитомягких материалов. Магнитные материалы на основе железа.
- •32. Магнитооптические тонкопленочные эффекты. Эффект Фарадея. Феррит-гранаты Поляризация света
- •Феррит-гранаты
- •33. Магнитные свойства и классификация магнитных материалов.
- •Ферромагнетики
- •14.1.4. Антиферромагнетики
- •14.1.5. Ферримагнетики
- •34. Природа ферромагнетизма. Обменное взаимодействие. Магнитная анизотропия.
- •14.2.2. Магнитная анизотропия
- •35. Междолинные переходы. Отрицательное дифференциальное сопротивление. Принцип генерирования свч-колебаний, основанный на использовании эффекта Ганна.
- •36. Основы сверхпроводимости. Лондоновская глубина проникновения, длина когерентности, куперовские пары.
- •37. Выскотемпературные сверхпроводящие материалы. Эффект Джозеффсона. Текстурированная втсп керамика.
- •§ 6.1. Стационарный эффект Джозефсона
- •38. Классификация диэлектрических материалов.
- •7.11. Керамические диэлектрики
- •Конденсаторная керамика
- •39. Коррозионная устойчивость металлов. Применение уравнения изотермы Вант-Гоффа для оценки окисляемости металлов.
20. Пленочные резистивные материалы. Резисторы. Параметры резисторов. Система обозначений и маркировка резисторов.
Классификация и конструкции резисторов
По назначению дискретные резисторы делят на:
1. резисторы общего назначения,
2. прецизионные,
3. высокочастотные,
4. высоковольтные,
5. высокоомные,
6. специальные.
По постоянству значения сопротивления резисторы подразделяют на:
1. постоянные,
2. переменные,
3. специальные.
По виду токопроводящего элемента различают проволочные и непроволочные резисторы. Основным элементом конструкции постоянного резистора является резистивный элемент, который может быть либо пленочным, либо объемным.
R = ρl/S
Для изготовления проволочных резисторов применяют сплавы никеля, хрома и т. д., имеющие большое р.
Для расчета сопротивления тонких пленок пользуются понятием удельного поверхностного сопротивления,
w — ширина резистивной пленки, δ — толщина резистивной пленки.
R = ρs l/w, где ρs = ρ/ δ удельное поверхностное сопротивление
Резисторы полупроводниковых ИМС представляют собой тонкую (толщиной 2-3 мкм) локальную область полупроводника, изолированную от подложки и защищенную слоем SiO2.
Параметры резисторов
Номинальное сопротивление Rном и его допустимое отклонение от номинала ±∆R
Номинальная мощность рассеивания Рном определяет допустимую электрическую нагрузку, которую способен выдержать резистор в течение длительного времени при заданной стабильности сопротивления
Предельное рабочее напряжение Uпред определяет величину допустимого напряжения, которое может быть приложено к резистору
Температурный коэффициент сопротивления (ТКС)
Коэффициент старения β характеризует изменение сопротивления, которое вызывается структурными изменениями резистивного элемента за счет процессов окисления, кристаллизации и т. д:
Коэффициент напряжения Ки характеризует влияние приложенного напряжения на сопротивление. В некоторых типах резисторов при высоких напряжениях изменяется сопротивление. В непроволочных резисторах это обусловлено уменьшением контактного сопротивления между отдельными зернами резистивной пленки. В проволочных резисторах это обусловлено дополнительным разогревом проволоки при повышенных напряжениях
ЭДС шумов резистора. Электроны в резистивном элементе находятся в состоянии хаотического теплового движения, в результате которого между любыми точками резистивного элемента возникает случайно изменяющееся электрическое напряжение и между выводами резистора появляется ЭДС тепловых шумов. Помимо тепловых шумов существует токовый шум, возникающий при прохождении через резистор тока. Этот шум обусловлен дискретной структурой резистивного элемента. При прохождении тока возникают местные перегревы, в результате которых изменяется сопротивление контактов между отдельными частицами токопроводящего слоя и, следовательно, флюктуирует (изменяется) значение сопротивления.
Система обозначений и маркировка резисторов
С 1980 года
1 первый элемент — буквенный: Р — постоянный резистор, РП — переменный резистор, РН — набор резисторов;
2 второй элемент — цифра: 1 — непроволочный резистор, 2 — проволочный резистор;
3 третий элемент — цифра, обозначающая разновидность конструкции.
Например, Р2-15 означает: резистор постоянный, проволочный, 15-й вариант конструкции.
При маркировке вместо запятой в наборе цифр, означающих номинальное значение сопротивления, ставят букву, указывающую, в каких единицах выражено сопротивление: R (или Е) — в омах, К — в килоомах, М — в мегаомах, G — в гигаомах, Т — в тераомах. При этом ноль, стоящий до или после запятой, не ставят. После указания величины номинального сопротивления ставят букву, обозначающую допуск Например, резистор с сопротивлением 0,47 кОм и допуском ±20 % маркируют К47В или К47М. Помимо буквенно-цифровой применяется цветовая индексация номинального сопротивления и допуска на корпусе резистора (ГОСТ 28883—90). Вблизи одного из торцов корпуса наносят 4 цветных полоски: первая обозначает первую цифру номинала, вторая — вторую цифру номинала, третья — множитель; четвертая — величину допуска, цвет полосок стандартизован.
У металлических сплавов удельное сопротивление зависит не только от концентрации компонентов, образующих данный сплав, но и от типа образовавшегося сплава. гетерогенные структуры (механические смеси), твердые растворы с неограниченной или ограниченной растворимостью компонентов друг в друге в твердом состоянии, химические (интерметаллические) соединения. Максимальное значение р проявляется у сплавов, кристаллическая решетка которых максимально деформирована ения. В результате пластической деформации, вызванной холодной ОМД, зерна (и блоки в них) удлиняются и измельчаются, возрастает деформация кристаллической решетки и увеличиваются в ней дефекты: возрастает плотность дислокаций и концентрация вакансий, что приводит к улучшению механических свойств — увеличивается твердость и предел прочности на разрыв. Однако удельное сопротивление при этом также увеличивается. При рекристаллизационном отжиге металлов, подвергнутых холодной ОМД, зерна (и блоки в них) будут округляться и укрупняться, кристаллическая решетка выпрямляться, а концентрация дефектов в ней будет уменьшаться. Понизится твердость и предел прочности на разрыв. При упругой деформации, вызванной растяжением, амплитуды тепловых колебаний узлов кристаллической решетки увеличатся, в результате уменьшится λ, и возрастет ρ.
Влияние частоты напряжения.
Высокочастотный ток оказывается распределенным по сечению проводника неравномерно — большая его часть сосредоточивается у поверхности проводника. Это явление называют скин-эффектом. Скин-эффект характеризуется глубиной проникновения электромагнитного поля в металлический проводник: чем выше частота поля, тем на меньшую глубину оно проникает в проводник.
глубина проникновения поля ∆= 1/a = √ 2/ωγμoμ = 1/ √ƒπγμoμ
сопротивление квадрата его поверхности Rs = 1/γ∆