
- •В.В. Давнис, в.И. Тинякова эконометрические методы прогнозирования
- •1. Теоретические основы прогнозирования
- •1.1. Сущность экономического прогнозирования
- •1.2. Типология прогнозов
- •1.3. Этапы прогнозирования
- •2. Экстраполяция временных рядов
- •2.1. Сущность экстраполяции
- •2.2. Типы роста и трендовые модели
- •2.3. Метод наименьших квадратов (мнк)
- •В общем случае поиск оптимальных параметров сводится к решению нелинейной экстремальной задачи. Обычно рассматривают линейный случай
- •Решая линейную систему (2.26) с помощью замены
- •2.4. Адекватность. Критерий Дарбина – Уотсона
- •2.5. Критерии точности прогнозных расчетов
- •3. Регрессионный анализ и прогноз
- •3.1. Множественная регрессия
- •3.1.1. Основные понятия регрессионного анализа
- •3.1.2. Общий вид модели множественной регрессии
- •3.1.3. Метод наименьших квадратов в матричной форме
- •3.1.4. Парная регрессия как частный случай множественной
- •3.1.5. Мультиколлинеарность факторов
- •3.1.6. Особенности применение регрессионных моделей в прогнозных расчетах
- •3.2. Обобщенный регрессионный анализ
- •3.2.1. Обобщенная схема мнк
- •Здесь использован тот факт, что
- •3.2.2. Метод взвешенных наименьших квадратов
- •3.2.3. Корректировка стандартных ошибок
- •3.2.4. Тесты на гетероскедастичность
- •3.3. Регрессионные модели с автокоррелированными остатками
- •3.3.1.Общая схема мнк в случае автокорреляции первого порядка
- •3.3.2. Методы тестирования на автокорреляцию
- •3.3.3. Методы оценивания параметра
- •3.3.4. Прогнозные расчеты при автокоррелированных остатках
- •3.4. Регрессионные модели с лаговыми переменными
- •3.4.1. Общий вид моделей с лагами в независимых переменных
- •4. Авторегрессионные процессы и их модели
- •4.1. Стационарность
- •4.2. Модель авторегрессии
- •4.3. Понятие интеграции
- •4.4. Модели скользящей средней
- •4.5. Авторегрессионные модели скользящей средней
- •4.6. Авторегрессионные интегрированные модели скользящей средней
- •4.7. Коэффициент автокорреляции и проверка его значимости
- •4.8. Определение порядка моделей arma
- •4.9. Построение моделей arima
- •4.10. Проверка адекватности моделей arma
- •4.11. Оценка точности прогнозных расчетов по моделям arima
- •5. Адаптивные модели прогнозирования
- •5.1. Специфика адаптивного моделирования
- •5.2. Полиномиальные модели
- •5.3. Рекуррентный метод наименьших квадратов
- •5.4. Многофакторные адаптивные модели
- •5.5. Адаптивные многошаговые модели
- •5.6. Выбор начальных значений и
- •6. Прогнозирование сезонных колебаний
- •6.1. Моделирование периодических колебаний
- •Эта запись получена с использованием тригонометрического тождества
- •6.2. Аддитивная и мультипликативная модели
- •6.3. Моделирование сезонных колебаний
- •6.4. Адаптивные модели сезонных явлений
2.3. Метод наименьших квадратов (мнк)
Простейшую экстраполяционную модель, отражающую взаимосвязь прогнозируемого показателя с некоторой переменной, формирующей динамику этого показателя, можно записать в виде
,
(2.21)
где
–
значение
-го
наблюдения прогнозируемого показателя;
– значение
переменой, формирующей динамику
показателя в момент времени
(для трендовых моделей, являющихся
частным случаем экстраполяционных,
);
–
вектор неизвестных
параметров, оцениваемых по данным
временного ряда;
–
функция, определяющая
структуру трендовой модели (линейную,
степенную и т.п.);
– ненаблюдаемая
случайная величина, представляющая
собой ту часть вариации показателя
,
которая не объясняется соответствующими
изменениями переменной
.
Чем ниже уровень
вариаций около 0 возможных значений
случайной величины
,
тем точнее модель отражает взаимодействие
переменной
с прогнозируемым
показателем
,
т.е. параметры модели должны подбираться
таким образом, чтобы минимизировать
сумму квадратов отклонений (случайных
составляющих
)
. (2.22)
В общем случае поиск оптимальных параметров сводится к решению нелинейной экстремальной задачи. Обычно рассматривают линейный случай
(2.23)
который значительно упрощает решение этой задачи.
Рассмотрим применение метода наименьших квадратов к случаю построения линейного тренда. Для этого случая (2.22) перепишется в виде
(2.24)
Применяя
дифференциальное исчисление для
минимизации (2.24) и дифференцируя по
и
,
получаем систему линейных уравнений
(2.25)
Разделив левую и
правую части этой системы на число
наблюдений
и
произведя замену:
;
;
;
,
перепишем систему (2.25) в виде
(2.26)
Решая линейную систему (2.26) с помощью замены
,
получаем оценки коэффициентов линейной трендовой модели в виде
;
.
(2.27)
В случае, когда в качестве тренда выбрана нелинейная функция, возникают некоторые проблемы построения таких функций с помощью МНК. Рассмотрим все варианты, которые могут иметь место в таких случаях.
Нелинейные модели принято делить на три класса: нелинейные по независимой переменной; нелинейные по оцениваемым параметрам, но приводящиеся путем преобразования к линейному виду; нелинейные по оцениваемым параметрам; не приводящиеся к линейному виду.
Нелинейные по независимой переменной:
-
парабола
;
-
полином третьей степени
;
-
равносторонняя гипербола
.
Нелинейные по оцениваемым параметрам:
-
степенная
;
-
показательная
;
-
экспоненциальная
.
Коэффициенты моделей первого класса после замены переменных рассчитываются с помощью метода наименьших квадратов. Построение моделей второго класса требует предварительного их приведения к линейному виду путем логарифмирования
;
;
.
После построения с помощью метода наименьших квадратов преобразованных моделей коэффициенты исходных моделей в случае необходимости получаются путем потенцирования.
Модели третьего класса (например, логистическая модель Перла – Рида и кривая Гомперца) не приводятся к линейному виду и, следовательно, не могут быть построены с помощью МНК.