Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Пособие_Часть_1_корр1.doc
Скачиваний:
102
Добавлен:
06.12.2018
Размер:
4.2 Mб
Скачать

2.3. Метод наименьших квадратов (мнк)

Простейшую экстраполяционную модель, отражающую взаимосвязь прогнозируемого показателя с некоторой переменной, формирующей динамику этого показателя, можно записать в виде

, (2.21)

где – значение -го наблюдения прогнозируемого показателя;

– значение переменой, формирующей динамику показателя в момент времени (для трендовых моделей, являющихся частным случаем экстраполяционных, );

– вектор неизвестных параметров, оцениваемых по данным временного ряда;

– функция, определяющая структуру трендовой модели (линейную, степенную и т.п.);

– ненаблюдаемая случайная величина, представляющая собой ту часть вариации показателя , которая не объясняется соответствующими изменениями переменной .

Чем ниже уровень вариаций около 0 возможных значений случайной величины , тем точнее модель отражает взаимодействие переменной с прогнозируемым показателем , т.е. параметры модели должны подбираться таким образом, чтобы минимизировать сумму квадратов отклонений (случайных составляющих )

. (2.22)

В общем случае поиск оптимальных параметров сводится к решению нелинейной экстремальной задачи. Обычно рассматривают линейный случай

(2.23)

который значительно упрощает решение этой задачи.

Рассмотрим применение метода наименьших квадратов к случаю построения линейного тренда. Для этого случая (2.22) перепишется в виде

(2.24)

Применяя дифференциальное исчисление для минимизации (2.24) и дифференцируя по и , получаем систему линейных уравнений

(2.25)

Разделив левую и правую части этой системы на число наблюдений и произведя замену:

; ; ; ,

перепишем систему (2.25) в виде

(2.26)

Решая линейную систему (2.26) с помощью замены

,

получаем оценки коэффициентов линейной трендовой модели в виде

; . (2.27)

В случае, когда в качестве тренда выбрана нелинейная функция, возникают некоторые проблемы построения таких функций с помощью МНК. Рассмотрим все варианты, которые могут иметь место в таких случаях.

Нелинейные модели принято делить на три класса: нелинейные по независимой переменной; нелинейные по оцениваемым параметрам, но приводящиеся путем преобразования к линейному виду; нелинейные по оцениваемым параметрам; не приводящиеся к линейному виду.

Нелинейные по независимой переменной:

  • парабола ;

  • полином третьей степени ;

  • равносторонняя гипербола .

Нелинейные по оцениваемым параметрам:

  • степенная ;

  • показательная ;

  • экспоненциальная .

Коэффициенты моделей первого класса после замены переменных рассчитываются с помощью метода наименьших квадратов. Построение моделей второго класса требует предварительного их приведения к линейному виду путем логарифмирования

;

;

.

После построения с помощью метода наименьших квадратов преобразованных моделей коэффициенты исходных моделей в случае необходимости получаются путем потенцирования.

Модели третьего класса (например, логистическая модель Перла – Рида и кривая Гомперца) не приводятся к линейному виду и, следовательно, не могут быть построены с помощью МНК.