Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции / ALL_EMEL.DOC
Скачиваний:
242
Добавлен:
22.02.2014
Размер:
3.06 Mб
Скачать

1.9.2. Аналоговые вычислительные машины

Аналоговые вычислительные машины (АВМ) относятся к классу машин непрерывного действия и разделяются на следующие типы:

- электронные;

- электромеханические.

Электронные АВМ имеют наибольшее применение вследствие их сравнительной простоты в изготовлении и эксплуатации. Процессы в исследуемой системе изучаются при помощи наблюдения процессов в некоторой схеме, которая описывается теми же дифференциальными уравнениями, что и исходная.

Существуют две разновидности электронных АВМ: модели структурного вида и модели матричного вида.

Первая позволяет моделировать структурную схему системы управления, что во многих случаях оказывается более удобным и наглядным.

К АВМ структурного вида относятся: ИПТ-5, МПТ-9, МПТ-11, МН-1, МН-2, МН-7, МНМ, ЭМУ-10 и др.

Машины матричного вида (ИПТ-4), ЭЛИ-14 и др.) требуют записи дифференциальных уравнений исследуемой системы в особой, матричной форме. Матричные модели менее удобны для исследования систем управления и используются реже.

1.9.3. Методы решения дифференциальных уравнений на авм

Решение задачи моделирования на АВМ структурного вида может быть осуществлено двумя способами:

1) по дифференциальному уравнению, которым описывается исследуемая система;

2) по структурной схеме исследуемой системы.

Пусть дана система регулирования с передаточной функцией и структурой рис. 1.9.1,а.

. (1.9.1)

Дифференциальное уравнение замкнутой системы будет выглядеть следующим образом:

[1+W(P)]y(t)=W(P)x(t). (1.9.2)

Приведем уравнение к полиноминальному виду

(a0P3+a1P2+a2P+a3)y(t)=a3x(t), (1.9.3)

где a0=T1T2, a1=T1+T2, a2=1 и a3=K1K11 .

Перейдем к машинным переменным и запишем дифференциальное уравнение для ввода в машину

(A0P3+A1P2+A2P+A3)Y()=B0x() (1.9.4)

или . (1.9.5)

Рассмотрим цепочку из трех последовательно включенных интеграторов (рис.1.9.1,б). Если на вход первого интегратора поступает величина P3Y, то на его выходе получится с учетом перемены знака величина P2Y, на выходе второго интегратора - величина РY и на выходе третьего - Y.

В результате можно реализовать дифференциальное уравнение (1.9.5) если на входе первого интегратора сложить с учетом знаков и масштабов все члены, входящие в правую часть формулы.

Принципиальная схема электронной модели приведена на рис.1.9.1,в. Типовые звенья набраны на операционных усилителях, резисторах и конденсаторах.

Рис.1.9.1. Моделирование на АВМ автоматической системы регулирования: а - структурная схема САР; б - структурная схема электронной модели; в - принципиальная схема электронной модели

1.9.4. Операционные усилители и схемы на их основе

Операционные усилители широко применяются в электронике, радиотехнике, в системах автоматического регулирования и управления.

На основе операционных усилителей выполняются типовые усилители с разными коэффициентами усиления, интеграторы, сумматоры и дифференцирующие звенья.

Операционный усилитель представляет собой усилитель постоянного тока с большим коэффициентом усиления по напряжению (десятки и сотни тысяч). Динамические свойства усилителя таковы, что он может быть замкнутым 100%-ной отрицательной обратной связью через резистор или конденсатор без потери устойчивости (без генерации) в замкнутом состоянии.

Передаточная функция усилителя, замкнутого обратной связью (рис.1.9.2) при большом коэффициенте усиления, может быть точно представлена в виде

. (1.9.6)

Рис.1.9.2. Типовые звенья САР на операционных усилителях: а - обобщенная схема; б - умножитель на число; в - интегратор; г - дифференцирующее звено; д - сумматор

Отсюда для построения усилителя со стабильным коэффициентом усиления необходимо воспользоваться схемой рис. 1.9.2,б. Коэффициент усиления определяется соотношением резисторов R1иR0

. (1.9.7)

Идеальный интегратор можно построить по схеме рис. 1.9.2,в. Передаточная функция в этом случае будет иметь вид:

. (1.9.8)

Идеальное дифференцирующее звено можно построить по схеме рис. 1.9.2,г. Передаточная функция будет выглядеть следующим образом:

W3(P) = - K3P = - RCP = - TP. (1.9.9)

Соседние файлы в папке лекции