Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
матан вопросы и ответы.doc
Скачиваний:
136
Добавлен:
23.11.2018
Размер:
2.11 Mб
Скачать
  1. Определенный интеграл с переменным верхним пределом. Формула Ньютона-Лейбница

Рассмотрим функцию , заданную на отрезке , и предположим, что она интегрируема на отрезке . Тогда при любом эта функция будет интегрируема на отрезке и, следовательно, функция

определена при всех . При мы по определению положим её равной 0, то есть будем считать, что для любой функции и точки из её области определения. Итак, функция равняется значению определённого интеграла с переменным верхним пределом, вычисленного от интегрируемой функции , не обязательно непрерывной.

(3.6)

где  -- произвольная первообразная для функции . Эта формула называется формулой Ньютона - Лейбница. Она играет ключевую роль в интегральном исчислении и во всём математическом анализе.

Напомним, что мы получили её в предположении, что функция непрерывна. Если функция имеет разрыв на отрезке , то разность значений первообразной может не иметь никакого отношения к величине определённого интеграла. Поэтому при применении формулы Ньютона - Лейбница нужно строго следить за законностью этого действия.

Смысл формулы Ньютона - Лейбница (3.6) состоит в том, что для нахождения определённого интеграла нам достаточно теперь найти произвольную первообразную для функции (напомним, что для этого надо найти неопределённый интеграл) и взять разность значений этой первообразной в концах отрезка, .

Итак, формула Ньютона - Лейбница устанавливает связь между определённым интегралом от данной функции и первообразной для этой функции, то есть между определённым и неопределённым интегралами. Заметим, что смысл этих двух понятий первоначально совершенно различен: неопределённый интеграл -- это набор функций (первообразных), а определённый интеграл -- это число (равное пределу интегральных сумм).

При вычислениях разность часто называют подстановкой в функцию пределов и и обозначают . Таким образом, по определению,

а формулу Ньютона - Лейбница можно записать в виде

  1. Интегрирование по частям и заменой переменной в определенном интеграле

Интегрирование по част́м — один из способов нахождения интеграла. Суть метода в следующем: если подынтегральная функция представима в виде произведения двух непрерывных и гладких функций (каждая из которых может быть как элементарной функцией, так и композицией), то справедливы следующие формулы

для неопределённого интеграла:

для определённого:

Предполагается, что нахождение интеграла проще, чем . В противном случае применение метода не оправдано.

Для неопределённого интеграла

Функции и гладкие, следовательно, возможно дифференцирование:

Эти функции также непрерывны, значит можно взять интеграл от обеих частей равенства:

Операция интегрирования обратна дифференцированию:

После перестановок:

Для определённого

В целом аналогично случаю неопределённого интеграла:

11.3.4. Замена переменной в определённом интеграле. Теорема. Пусть функция

    1. определена, непрерывно дифференцируема и монотонна на отрезке ,

    2. ,

    3. функция непрерывна на отрезке [a, b].

Тогда .

Док-во. Пусть F(x) - первообразная для функции f(x), т.е. , тогда - первообразная для функции . , что и требовалось доказать.

При решении задач нельзя забывать о том, что при переходе к новой переменной надо обязательно вычислить новые пределы интеграла.